
MM001177.R2 Hierarchical Cellular Tree: An Efficient Indexing Scheme for Content-based Retrieval on Multimedia Databases

1

Abstract— One of the challenges in the development of a

content-based multimedia indexing and retrieval application is to
achieve an efficient indexing scheme. The developers and users
who are accustomed to making queries to retrieve a particular
multimedia item from a large scale database can be frustrated by
the long query times. Conventional indexing structures cannot
usually cope with the requirements of a multimedia database,
such as dynamic indexing or the presence of high-dimensional
audiovisual features. Such structures do not scale well with the
ever increasing size of multimedia databases whilst inducing
corruption and resulting in an over-crowded indexing structure.
This paper addresses such problems and presents a novel
indexing technique, Hierarchical Cellular Tree, which is designed
to bring an effective solution especially for indexing large
multimedia databases. Furthermore it provides an enhanced
browsing capability, which enables user to make a guided tour
within the database. A pre-emptive cell search mechanism is
introduced in order to prevent corruption, which may occur due
to erroneous item insertions. Among the hierarchical levels that
are built in a bottom-up fashion, similar items are collected into
appropriate cellular structures at some level. Cells are subject to
mitosis operations when the dissimilarity exceeds a required
level. By mitosis operations, cells are kept focused and compact
and yet, they can grow into any dimension as long as the
compactness is maintained. The proposed indexing scheme is
then used along with a recently introduced query method, the
Progressive Query, in order to achieve the ultimate goal, from the
user point of view that is retrieval of the most relevant items in
the earliest possible time regardless of the database size.
Experimental results show that the speed of retrievals is
significantly improved and the indexing structure shows no sign
of degradations when the database size is increased.
Furthermore, HCT indexing body can conveniently be used for
efficient browsing and navigation operations among the
multimedia database items.

Index Terms— content-based retrieval, metric access methods,
multimedia databases, similarity-based indexing.

I. INTRODUCTION
T is a known fact that recent technological hardware and
network improvements along with the daily usage of Internet

have caused a rapid increase in the size of digital audio-visual
information that is used, handled and stored via several
applications. Besides several benefits and usages, such massive
collection of information has brought storage and especially
management problems. In order to overcome such problems
several content-based indexing and retrieval techniques and

applications have been developed such as MUVIS system [18],
[19], [24], Photobook [28], VisualSEEk [34], Virage [39], and
VideoQ [9], all of which are designed to bring a framework
structure for handling and especially the retrieval of the digital
multimedia items such as images, audio and/or video clips. In
such frameworks, database primitives are mapped into some high
dimensional feature domain, which may consist of several types
of features such as visual, aural, etc. From latitude of low-level
features, careful selection of the feature sets to be used for a
particular application may capture the semantics of the database
items in a content-based multimedia retrieval (CBMR) system. In
this way the similarity between two database items can be
estimated by calculating the (dis-) similarity distance between
their feature vectors. Such distances produce a ranking order of
similar multimedia items within the database. This is the general
query-by-example (QBE) scenario, which on the other hand is
costly and CPU intensive especially for large multimedia
databases. This fact brought a need for indexing techniques,
which will organize the database in such a way that the query
time and I/O operations could be reduced. The indexing
techniques can be mainly grouped in two categories: Spatial and
Metric Access Methods (SAMs and MAMs). However, both
types have significant drawbacks for the indexing of large-scale
multimedia databases. SAMs are, by nature, not suitable for this
purpose due to strict assumptions and several well-known
limitations they present. For instance the applicability of SAMs is
limited by the fact that items have to be represented by the points
in N dimensional feature space and the (dis-)similarity distance
between two points has to be based on a distance function in pL

metric such as Euclidean distance. Furthermore SAMs, while
providing good results on low dimensional feature space do not
scale up well to high dimensional spaces due to the phenomenon
so called “the curse of dimensionality”. Recent studies [37] show
that most of the SAM-based indexing schemes even become less
efficient than sequential indexing for dimensions higher than 10.
Especially large multimedia databases might contain many visual
and aural features exceeding this limit multiple times. A more
general approach can be obtained by MAMs, which basically
comes from the fact that any MAM employs the indexing process
by assuming only the availability of a similarity distance function
that is a norm. Therefore, in a multimedia database with several
multi-dimensional features, as long as a similarity distance
function that is usually treated as a “black box” by the underlying
MAM, exists the database can be indexed by any MAM. Yet the
existing MAMs present several drawbacks for similarity-based
indexing of multimedia databases. The static MAMs, for instance,
do not support dynamic changes (new insertions or deletions);
whereas this is an essential requirement during the incremental

Hierarchical Cellular Tree: An Efficient Indexing Scheme
for Content-based Retrieval on Multimedia Databases

Serkan Kiranyaz and Moncef Gabbouj

I

MM001177.R2 Hierarchical Cellular Tree: An Efficient Indexing Scheme for Content-based Retrieval on Multimedia Databases

2

construction of a multimedia database. Even though M-tree [10]
and its variants provide dynamic database access, the incremental
construction of the indexing tree could lead, depending on the
order of the objects or the choice of its pre-fixed parameters, to
significantly varying performances during the indexing and
querying phases.

In order to overcome such problems and provide efficient
solutions to the aforementioned shortcomings of the indexing
algorithms for the multimedia databases, we develop a MAM-
based, dynamic and self-organized indexing scheme, the
Hierarchical Cellular Tree (HCT). As its name implies, HCT has
a hierarchic structure, which is formed into one or more levels.
Each level is capable of holding one or more cells. A cell
corresponds to a node in an M-tree. The reason for the different
name is because each cell further contains a tree structure, a
Minimum Spanning Tree (MST), which refers to the database
objects (their database representations and basically their
descriptors) as its MST nodes. Among all indexing structures
available, M-tree shows the highest structural similarity to HCT,
such as:

• Both indexing schemes are MAM-based and have a
similar hierarchical structure, i.e. levels.

• They are both created dynamically, in a bottom-up
fashion. The tree grows one level upwards whenever a split
occurs in the top level cell.

• Except the top level cell, each cell is represented by a
nucleus (routing) object in the higher level.

However, there are several major differences in their design
philosophies and objectives:

• M-tree is designed to achieve a balanced tree with a low
I/O cost in large data set. HCT is on the other hand designed for
indexing multimedia databases where the content variation is
seldom balanced and it is therefore, an unbalanced tree
optimized for achieving highly focused cells, which may exhibit
significant variations on size and density.

• M-tree depends on a maximum (fixed size) capacity M.
Therefore, its performance depends on a “good” choice of this
parameter with respect to the database size and thus, M-tree
construction significantly varies with it. However, for
multimedia databases the database size is dynamic and its
content may vary significantly. HCT, on the other hand, has no
limit for the cell size as long as the cell keeps a definite
“compactness” measure.

• In M-tree the cell compactness is only measured with
respect to distance of the routing (nucleus) object to the farthest
object that is so called the covering radius. Due to the
aforementioned reasons of unreliability on such single measure
for the cell compactness, HCT uses all cell items and their
minimum distances to the cell (instead of a single nucleus item
alone) to define a regularization function that represents a
dynamic model for the cell compactness. During the lifetime of
the HCT body (i.e. item insertions, removals, fitness checks,
post-reactions, etc.) this function dynamically updates the
current cell compactness feature, which is then compared to a
certain statistically driven level threshold value to decide
whether or not the cell should be split (mitosis).

• The split policies and objectives are also different
between M-tree and HCT.

• The insertion processes differ significantly in terms of
cell search operations. M-tree insertion operation is based on
“Most-Similar Nucleus” (MS-Nucleus in this article) cell
search, which depends on a simple heuristics which assumes
that the closest nucleus item (aka “routing object”) yields the
best sub-tree during the descend and finally the best (target) cell
to be appended. In this paper, we will show that this is not
always a valid assumption and it is a potential cause for
corruption since it may lead to sub-optimum insertions
especially for large databases due to the “crowd effect”. HCT is
designed to perform an optimum search for the target cell to
which the incoming item should belong. This search, so called
Pre-emptive cell search, during descend at each level verifies all
possible paths that are likely to yield a better nucleus item (and
hence a better cell at a lower level) in an iterative way. By this
way, along with the mitosis operation this search algorithm
further improves the cell compactness factor at each level.

• M-tree has a conservative structure that might cause
degradations in due time. For example, the cell nucleus (routing
object) is not changed after an insertion or removal operation
even though another item might now be a more suitable
candidate for being the cell nucleus. On the contrary, HCT has a
totally dynamic approach. Any operation (insertion, removal or
mitosis) can change the current cell nucleus to a new (better)
one.
The rest of this paper is organized as follows: Section 2

presents the related work in the area of indexing and retrieval. In
Section 3 we introduce the generic HCT design philosophy and
implementation details. Section 4 is devoted to QBE operations
over HCT indexing structure. A novel browsing scheme, HCT
Browsing, is discussed in Section 5. Section 6 presents the
experimental results. Finally, Section 7 concludes the paper and
discusses some future research topics.

II. RELATED WORK
For the past three decades, researchers proposed several indexing
techniques that are formed mostly in a hierarchical tree structure
that is used to cluster (or partition) the feature space. Initial
attempts such as KD-Trees [2] used space-partitioning methods
that divide the feature space into predefined hyperplanes
regardless of the distribution of the feature vectors. Such regions
are mutually disjoint and their union covers the entire space. In R-
tree [12] the feature space is divided according to the distribution
of the database items and region overlapping may occur as a
result. Both KD-tree and R-tree are the first examples of Spatial
Access Methods (SAMs). Afterwards several enhanced SAMs
have been proposed. R*-tree [1] provides a consistently better
performance by introducing a policy called “forced reinsert” than
the R-tree and R+-tree [32]. R*-tree also improves the node
splitting policy of the R-tree by taking overlapping area and
region parameters into consideration. Lin et al. proposed TV-tree
[25], which uses so-called telescope vectors. These vectors can be
dynamically shortened assuming that only dimensions with high
variance are important for the query process and therefore low
variance dimensions can be neglected. Berchtold et al. [5]
introduced X-tree, which is particularly designed for indexing
higher dimensional data. X-tree avoids overlapping of region
bounding boxes in the directory structure by using a new
organization of the directory and as a result, X-tree outperforms
both TV-tree and R*-tree significantly. It is 450 times faster than
R-tree and between 4 to 12 times faster than the TV-tree when the

MM001177.R2 Hierarchical Cellular Tree: An Efficient Indexing Scheme for Content-based Retrieval on Multimedia Databases

3

dimension is higher than two and it also provides faster insertion
times. Still bounding rectangles can overlap in higher dimensions.
In order to prevent this, White and Jain proposed the SS-tree [38],
an alternative to R-tree structure, which uses minimum bounding
spheres instead of rectangles. Even though SS-tree outperforms
R*-tree, the overlapping in the high dimensions still occurs.
Thereafter, several other SAM variants are proposed such as SR-
tree [14], S²-Tree [36], Hybrid-Tree [8], A-tree [31], IQ-tree [3],
Pyramid Tree [4], NB-tree [11], etc. The aforementioned
degradations and shortcomings prevent a wide spread usage of
SAM based indexing structures especially on multimedia
collections. In order to provide a more general approach to
similarity indexing for multimedia databases, several MAM-based
indexing techniques have been proposed. Yianilos [40] presented
vp-tree that is based on partitioning the feature vectors (data
points) into two groups according to their similarity distances
with respect to a reference point, so called vantage point. Bozkaya
and Ozsoyoglu [6] proposed an extension of vp-tree, so-called
mvp-tree (multiple vantage point), which basically assigns m

vantage points to a node with a fan out of 2m . They reported
20% to 80% reduction of similarity distance computation
compared to vp-trees. Brin [7] introduced Geometric Near-
Neighbor Access Tree (GNAT) indexing structure, which chooses
k number of split points at the top level and each of the remaining
feature vectors are associated with the closest split points. GNAT
is then built recursively and the parameter k is chosen to be a
different value for each feature set depending on its cardinality.
Koikkalainen and Oja introduced TS-SOM [20] that is used in
PicSOM [22] as a CBIR indexing structure. TS-SOM provides a
tree-structured vector quantization algorithm. Other similar SOM-
based approaches are introduced by Zhang and Zhong [41], and
Sethi and Coman [33]. All SOM-based indexing methods rely on
training of the levels using the feature vectors and each level has a
pre-fixed node size that has to be arranged according to the size of
the database. This brings a significant limitation, that is, they are
all static indexing structures, which do not allow dynamic
construction or updates for a particular database. Retraining and
costly reorganizations are required each time the content of the
image database changes (i.e. new insertions or deletions), that is
indeed nothing but rebuilding the whole indexing structure from
scratch. Similarly the rest of the MAMs so far addressed present
several shortcomings. Contrary to SAMs, these metric trees are
designed only to reduce the number of similarity distance
computations, paying no attention to I/O costs (disk page
accesses). They are also intrinsically static methods in the sense
that the tree structure is built once and new insertions are not
supported. Furthermore, all of them build the indexing structure
from top to bottom and hence the resulting tree is not guaranteed
to be balanced. Ciaccia et al. [10] proposed M-tree to overcome
such problems. M-tree is a balanced and dynamic tree, which is
built from bottom to top, creating a new root level only when
necessary. The node size is a fixed number, M, and therefore, the
tree height depends on M and the database size. Its performance
optimization concerns both CPU computational time for similarity
distances and I/O costs for disk page accesses for feature vectors
of the database items. Recently, Traina et al. [35] proposed Slim-
tree, an enhanced variant of M-trees, which is designed for
improving the performance by minimizing overlaps between
nodes. They introduced two parameters, “fat-factor” and “bloat-
factor”, to measure the degree of overlap and proposed the usage
of Minimum Spanning Tree (MST) [21], [29], for splitting the

node. Another slightly enhanced M-tree structure, so-called M+-
tree, can be found in [42].

Along with the indexing techniques addressed so far, certain
query techniques have to be used to speed up a query process
within indexed databases. The most common query techniques are
as follows:

• Range Query: Given a query object, Q, a maximum
similarity distance range, ε, and a non-negative similarity distance
function SD, the range query selects all indexed database items,

iQ , such that SD (Q, iQ) < ε.

• kNN Query: Given a query object, Q, and an integer
number k > 0, kNN query selects the k database items, which
have the shortest similarity distance from Q.

Both query techniques may not provide efficient retrieval
scheme from the user point of view due to their parameter
dependency. For instance, range queries require a distance
parameter, ε, where the user may not be able to provide such a
number prior to a query process since it is not obvious how to
find out a suitable range value if the database contains various
types of features and feature subsets. Similarly, for a kNN query
the parameter k might be hard to determine since if chosen too
small the database may provide a large number of similar
(relevant) items than required, and if too big, unnecessary CPU
time might have been wasted for that query process if only a
much smaller number was in fact needed. In general, both query
techniques require several trials to converge to a successful
retrieval result and this might remove the speed benefit of the
underlying indexing scheme, if there is any.

In order to eliminate such drawbacks and provide a faster query
scheme, recently a novel retrieval scheme, the Progressive Query
(PQ), has been proposed [15]. PQ is a retrieval (via query)
technique, which can be performed over the databases with or
without the presence of an indexing structure. When the database
has an indexing structure, PQ can replace kNN and range queries
whenever a Query Path (QP) over which PQ proceeds, can be
formed. Instead of relying on some unknown parameters such as k
or ε, PQ provides periodic query results along with the query
process and allows the user to stop the query in case the results
obtained so far are satisfactory. Therefore, the proposed (HCT)
indexing technique has been designed to work in harmony with
PQ in order to evaluate the retrieval performance in the end, i.e.
how fast the most relevant items can be retrieved or how efficient
HCT can provide a QP for a particular query item.

III. HCT OVERVIEW
HCT is a dynamic, cell–based and hierarchically structured
indexing method, which is purposefully designed for PQ
operations and advanced browsing capabilities within large
multimedia databases. It is mainly a hierarchical clustering
method where items are partitioned depending on their relative
distances and stored within cells on the basis of their similarity
proximity. The similarity distance function implementation is a
black-box for the HCT. Furthermore, HCT is a self-organized tree,
which is implemented via genetic programming principles. This
basically means that the operations are not externally controlled;
instead each operation such as item insertion, removal, mitosis,
etc. are carried out according to some internal rules within a
certain level and their outcomes may uncontrollably initiate some
other operations on other levels. Yet all such “reactions”
terminate in a limited time, that is, for any action (i.e. an item

MM001177.R2 Hierarchical Cellular Tree: An Efficient Indexing Scheme for Content-based Retrieval on Multimedia Databases

4

insertion), its consequent reactions will not last indefinitely due to
the fact that each of them can occur only in a higher level and any
HCT body has naturally a finite number of levels. In the
following sub-sections, we will detail the basic structural
components of the HCT body and then explain the indexing
operations in an algorithmic way.

A. Cell Structure
A cell is the basic container structure, in which similar database
items are stored. The ground level cells contain the entire
database items. Each cell further carries a MST whose nodes span
all items in the cell. This internal MST is used to keep the
minimum (dis-) similarity distance of each individual item to the
rest of the items in the cell. So this scheme resembles MVP-tree
[6] structure; however instead of using some (pre-fixed) number
of items, all cell items are now used as vantage points for any
(other) cell item. These item-cell distance statistics are mainly
used to calculate the cell compactness. In this way we can have a
better idea about the similarity proximity of any item instead of
comparing it only with a single item (i.e. the cell nucleus) and
hence a better compactness feature. The compactness algorithm is
a black-box implementation. Here, we use a regularization
function obtained from the statistical analysis using the MST and
some cell data. This dynamic feature can then be used to decide
whether or not to perform mitosis within the cell at any instant. If
mitosis is granted, MST is again used to decide where the split
should occur and the longest branch of the MST is the natural
choice for this. Furthermore, MST is used to update cell nuclei to
the most suitable item after any operation is completed within the
cell.

In HCT, the cell size is kept entirely flexible and varies with no
upper bound. However, similar to organic cells, HCT cells are not
allowed to undergo mitosis before reaching a certain level of
maturity. Otherwise one cannot obtain reliable information
whether or not the cell is ready for mitosis since there is simply
not enough statistical data that are gathered from the cell items
and its MST. Therefore, a maturity cell size (e.g. 5≥MN) is set
for all cells in HCT body (level independent) except the top level.
Since the top level is the unique level hosting a single cell, the
latter may be allowed to have a moderate maturity cell size (i.e.

10≥T
MN), possibly set as a user preference since the top level

(cell) can be thought as a “Table of Contents” of the database
whilst giving a summary of the overall HCT body. On the other
hand, the maturity cell size should not be confused with
parameter M for M-tree where M is used to enforce mitosis for a
cell with size M irrespective of the cell condition (i.e.
compactness) is. In HCT, we set minimum size as a pre-requisite
condition for a cell to undergo mitosis. This is not a significant
parameter, which neither affects the overall performance of HCT
nor needs to be proportional to the database size or any other
parameter, as is the case for M-tree.

1) MST Formation: Let },{ BNG = be a connected and

weighted graph, where nN = nodes (vertices) and

bB = branches (edges). Let iw represents the ith branch weight.

A spanning tree of G is a subgraph },{ SBNS = where

BBS ⊆ . The overall weight of S can be defined as the

cumulative weight of its branches, i.e. ∑=
SB iS wW . MST of

G can then be defined as the (unique) spanning tree with
minimum cumulative (total) weight. There are several MST
construction algorithms, such as Kruskal’s [21] and Prim’s [29].
Those algorithms are, however, static algorithms, that is, all MST
branches with their weights should be known beforehand. Since
MST nodes represent database items, this requires a priori
calculation of the relative similarity distances and hence yields a

)(2nO computational cost. In HCT cells and their MST should
be constructed dynamically (incrementally) since items can be
inserted any time and it would be infeasible to re-construct MST
from scratch each time a new item is inserted since such an
operation would require)(3nO computations. Therefore, an
incremental MST construction algorithm is adopted based on leaf
node (vertex) pruning and branch (edge) contraction [13]. This is
a sequential algorithm and has)(nO computational complexity

per (incoming) item and hence)(2nO overall cost as desired.
2) Cell Nucleus: Cell nucleus is the item, which represents the

owner cell on the higher level(s). Since during the top-down cell
search for an item insertion, these nucleus items are used to
decide the cell into which the item should be inserted, it is
therefore essential to promote the best item for this representation
on any instant. When there is only one item in the cell, it is
obviously the nucleus item of that cell. Otherwise the nucleus
item is assigned by using the cell MST as the item having the
maximum number of branches (connections to other items). This
heuristics makes sense since it is the unique item to which most of
the items have the closest proximity to it (according to the MST
optimality on the minimal branch weights). Contrary to static
nucleus assignment of the some other MAM-based indexing
schemes such as M-tree, the cell nucleus is dynamically verified
and if necessary updated for any HCT cell whenever an operation
is performed over the cell in order to maintain the best
representation of the (dynamically changing) cell and there is no
computational cost for this so far since it can be extracted directly
from the “ready” MST (branch) data.

3) Cell Compactness: Cell compactness quantifies how tight
(focused) the clustering for the items within the cell. Furthermore,
the regularization function implementation for the calculation of
the cell compactness value is in general a black box for HCT. In
this sub-section we will present the statistical parameters of this
function used in the experiments.

Due to “semantic gap” the discrimination power of the low-
level visual or aural features can be quite limited. Consequently,
high variations might occur among the similarity distances
calculated between a single item (i.e. a vantage point) and a group
of “similar” items and this naturally creates a major problem if the
compactness measure would be based on a single nucleus item.
This is the main reason why instead of using a single (nucleus)
item to find out the similarity of a new (incoming) item, multiple
vantage points, i.e. all cell items for a HCT cell, are used. Once a
cell reaches maturity (a pre-requisite for evaluating cell
compactness) reliable first order statistics can thus be obtained
from the branch weights of cell MST. Using also the covering
radius, a regularization function, f, providing a model for the
compactness feature of the cell, CCF , can then be formed as
follows:

MM001177.R2 Hierarchical Cellular Tree: An Efficient Indexing Scheme for Content-based Retrieval on Multimedia Databases

5

0)),max(,,,(≥= CCCCCC NwrfCF σμ (1)

where Cμ and Cσ are the mean and standard deviation of the

MST branch weights, Cw , of cell C. Cr is the covering radius,
that is the distance from the nucleus to the farthest item in the cell
and MC NN > is the number of items in the cell C. The
regularization function can then be formed in such a way that
higher values of all the statistical parameters are to be penalized
since a better compactness can be achieved via minimizing all
whilst CN increases gradually with the item insertions. In the

limit, the highest compactness is achieved when 0=CCF which
means that all cell items are identical.

Similar to continuous updates for the nucleus item, the CCF
value is also updated (recalculated) each time an operation is
performed over the cell C. The new (updated) CCF is then

compared with the current level compactness threshold, LCThr ,
that is dynamically calculated within each level and if the cell is
mature but not compact enough, i.e. LC CThrCF > , mitosis is
therefore, granted for that cell.

4) Cell Mitosis: As explained earlier there are two conditions
necessary for a mitosis operation: maturity (i.e. MC NN >) and

cell compactness (i.e. LC CThrCF >). Both conditions are
checked after an operation (e.g. item insertion or removal) occurs
within the cell in order to signal a mitosis operation. Due to the
presence of MST within each cell, mitosis has no computational
cost in terms of similarity distance calculations. The cell is simply
split by breaking the longest branch in MST and each of the
newborn child cells is formed using each of the MST partitions. A
sample mitosis operation is illustrated in Figure 1.

Parent Cell Before Mitosis 2 Child Cells After Mitosis

3

2

4

1

25
1

1

1 6

7

9

8

32

2

6

7

9

8

32

2

3

2

4

1

25
1

1

1
X
8

+=

C2
C

C1

Figure 1: A Sample Mitosis operation over a mature cell C.

B. Level Structure
HCT body is hierarchically partitioned in one or more levels, as

one sample example shown in Figure 5. In this example there are
three levels that are used to index 18 items. Apart from the top
level, each level contains various number of cells that are created
by mitosis operations, which have occurred on that level. The top
level contains a single cell and when this cell splits, a new top
level is created above this level. As mentioned earlier, the nucleus
item of each cell on a particular level is represented on the higher
level.

Each level logs the operations performed on it, such as the
number of mitosis operations and the compactness of the cells.
Note that each level tries to dynamically maximize the
compactness of their cells. This however is not a straightforward

process since incoming items may not exhibit a close similarity to
the items present in the cells, and therefore, such dissimilar item
insertions will cause a temporary degradation of the overall
(average) compactness of the level. So each level, while
analyzing the effects of the (recent) incoming items on the overall
level compactness, should employ necessary management steps to
provide a trend of improving compactness in due time (i.e. with
future insertions). Within a period of time (i.e. during a number of
insertions or after some number of mitosis operations), each level
updates its compactness threshold according to the compactness
of mature cells, into which items were inserted. In our earlier
work [17], where an initial HCT indexing scheme is first
designed, we used a simple, average-based setting for LCThr ,
such as:

PCF

SC

NNC
CL SCkCF

P
kCThr

C

P

MC

∈∀== ∑
∈

>

μ0
0 (2)

where PS is the set of mature cells on level L, upon which P

insertions have recently been performed and 00 ≥k is the
inverse of compactness trend factor, which determines how much
enhancement will be targeted for the next P insertions beginning
from the moment of the latest LCThr setting. Although this
function gives fairly good results for most of the cases, it is
significantly effected by the extreme cases where CCF is too
high or too low for some cells during P insertions. Therefore, it
might show a noisy behavior due to random item insertions and
the danger of over- or under-splitting cells emerges. A robust and
more convergent LCThr function can be expressed in Eq. (3)

)(1

0
MCL SCCFMedian

k
CThr ∈∀= (3)

where MS is the set of mature cells present in the current HCT

body and 00 >k is the compactness trend factor, which
determines how much flexibility can be allowed for incoming
insertions starting from the moment of the latest LCThr setting.

If 10 =k , the trend is built upon keeping the current level of
compactness intact and so no enhancement will be targeted for
future insertions. On the other hand, when ∞→0k then the cells
will split each time they reach maturity and in this case HCT split
policy will be identical to M-tree. The Median operator keeps the
extreme cases out from the LCThr calculation for future
insertions and hence continuously tracks a median cell maturity
level. Its convergence behavior can be seen in Figure 8 (top) for a
sample incremental HCT formation experiment.

C. HCT Operations
There are mainly three HCT operations: cell mitosis, item
insertion and removal. Cell mitosis can only happen as a post
processing after any of the other two HCT operations occurs.
Both item insertion and removal are generic HCT operations that
are identical for any level. Item insertion is performed as one item
into one level at a time; whereas, item removal is a cell-based
operation meaning that items belonging to the same cell can be

MM001177.R2 Hierarchical Cellular Tree: An Efficient Indexing Scheme for Content-based Retrieval on Multimedia Databases

6

removed in a single step. In the following sub-sections, we will
present the algorithmic details of both operations.
1) Item Insertion Algorithm for HCT: Let nextItem be the item to
be inserted into a target level indicated by a number, levelNo.
Accordingly, the Insert algorithm can be expressed as follows:

The insertion algorithm, Insert (nextItem, levelNo), first

performs a novel search algorithm, the Pre-emptive cell search,
which recursively descends HCT from top to the target level in
order to locate the most suitable cell for nextItem. Once the target
cell is located, the item is inserted into the cell and then the cell
becomes subject to a generic post-processing check. First the cell
is examined for a mitosis operation and as explained earlier if the
cell is mature and yields a worse compactness than required (i.e.

LC CThrCF >), then mitosis is applied to produce two new
(child) cells on the same level. The parent cell is thus removed
from the cell queue of the level and two child cells are inserted
instead. Accordingly, the old nucleus item is removed from the
upper level and two new nucleus items are inserted into the upper
level by consecutively calling Insert (nextItem, levelNo+1)
function for both of the (nucleus) items. This is a particular
genetic algorithm example where an independent process
deterministically calls another process in an iterative way. Note
that these processes are independent from each other but the
outcome of one may initiate the other. In case mitosis is not
performed (for instance the cell is still compact enough after
insertion) another post processing step is performed to verify the
need for the cell nucleus change. In such a case, first the old
nucleus is removed from the upper level and the new one is
inserted. Item insertion is a level-based operation and is
implemented per item at a time.

PreemptiveCellSearch implements the Pre-emptive cell
search algorithm for finding the target (owner) cell on the level
where insertion should occur. The traditional cell search
technique, MS-Nucleus used in M-Tree and its derivatives,
depends on a simple heuristics, which assumes that the closest
nucleus (routing) object yields the best sub-tree during descend
and finally the best (owner) cell to be appended. Let d() be the
similarity distance function, O the object to be inserted, i

NO and

)(i
NOr the nucleus object and its covering radius for the ith

cell, iC , respectively. Particularly in M-tree, the rationale used is
divided into two distinct cases:
Case 1. If no nucleus item for which

i
i
N

i
N COrOOd ∀≤)(),(exists, goal becomes to minimize

the increase of the covering radius, i.e.

i
i
N

i
Ni COrOOd ∀−=Δ)(),(, among all the nucleus objects

that are in the owner cell C.
Case 2. If there exists a nucleus item for which

i
i
N

i
N COrOOd ∀≤)(),(, then its sub-tree is tracked on the

lower level. If multiple sub-trees (nucleus objects) with this
property exist, then the one to which the object O is the closest, is
chosen.

Both cases fail to track the closest (most similar) objects on the
lower level as the sample illustration shows in Figure 2. In this
figure, 1

NO and 2
NO are the nucleus (routing) objects

representing the lower level cells 1C and 2C on the upper level.
In both cases, the MS-Nucleus technique tracks down the sub-tree
of 2

NO , that is, the cell 2C as a result of the cases expressed
above. However, on the lower level the closest (most similar)
object is item c (since 21 dd <), which is a member of 1C .

o

1d 2d

o

1d 2d

Case 2:

1
NO1

NO 2
NO 2

NO
)(1

NOr)(1
NOr)(2

NOr
)(2

NOr

1Δ 2Δ

212 CO ⎯→⎯⇒Δ<Δ 2
2

2)(COOrd N ⎯→⎯⇒<

1C 2C
1C

2C
Case 1:

a

f

c d

b
e

a

e

dc

b

f

Figure 2: M-Tree rationale used to determine the most
suitable nucleus (routing) object for two possible cases. Note
that in both cases the rationale fails to track on the closest
nucleus object on the lower level.

Pre-emptive cell search algorithm in HCT performs a pre-
emptive analysis on the upper level to find out all possible
nucleus objects, which might yield the closest (most similar)
objects on the lower level. Note that on the upper level we have
no information about the items in cells 1C and 2C , yet we can
set appropriate pre-emptive criteria to fetch all possible nucleus
items whose cells should be analyzed to track on the closest item
(item c in this particular example) in the lower level. Let mind be
the distance to the closest nucleus item (in the upper level). Then
pre-emptive cell search rationale can be expressed as follows:
Case 1. If no nucleus item for which

i
i
N

i
N COrOOd ∀≤)(),(exists, then fetch all nucleus items

Insert (nextItem, levelNo)
 Let top level number: topLevelNo and the single cell in top

level: cell-T
 If(levelNo > topLevelNo) then do:

o Create a new top level: level-T with number =
topLevelNo+1

o Create a new cell in level-T: cell-T
o Append nextItem into cell-T.
o Return.

 Let the Owner (target) cell in level levelNo: cell-O
 If(levelNo = topLevelNo) then do:

o Assign cell-O = cell-T
 Else do:

o Create a cell array for Pre-emptive cell search:
ArrayCS[], put cell-T into it

o Assign cell-O = PreEmptiveCellSearch (ArrayCS[],
nextItem, topLevelNo)

 Append nextItem into cell-O.
 Check cell-O for Post-Processing:

o If cell-O is split then do:
 Let item-O, item-N1 and item N2 be old nucleus

item (parent) and new nucleus items.
 Remove(item-O, levelNo+1)
 Insert(item-N1, levelNo+1)
 Insert(item-N2, levelNo+1)

o Else if nucleus item is changed within cell-O then do:
 Let item-O and item-N be old and new nucleus

items.
 Remove(item-O, levelNo+1)
 Insert(item-N, levelNo+1)

 Return.

MM001177.R2 Hierarchical Cellular Tree: An Efficient Indexing Scheme for Content-based Retrieval on Multimedia Databases

7

whose cells on the lower level may provide the closest object, i.e.

i
i
N

i
Ni CdOrOOd ∀≤−=Δ min)(),(, among all the

nucleus objects that are in the owner cell C.
Case 2. If there exists one or more nucleus item(s) for which

i
i
N

i
N COrOOd ∀≤)(),(, then fetch all of them since their

owner cells on the lower level may provide the closest object.
Since Case 1 implies Case 2, Case 1 can be used as the one and

only criterion to fetch all nucleus items for tracking. At each level
descending towards the target level, using such a pre-emptive
analysis that fetches all nucleus items whose owner cells may
provide the “most similar” nucleus item for the lower level and so
on, Pre-emptive cell search terminates its recursion one level
above the target level and presents the (final) most similar nucleus
item with its owner cell on the target level into which the nextItem
should be inserted. This achieves an optimum insertion scheme in
the sense that the owner cell found on the target level presents the
closest nucleus item with respect to the item to be inserted (i.e.
nextItem). As a natural consequence of this, Pre-emptive cell
search based item insertion algorithm increases the likelihood of
achieving a better cell compactness along with the mitosis
operations. Accordingly the Pre-emptive cell search algorithm,
PreemptiveCellSearch, can be expressed as follows:

 Experimental results show that Pre-emptive cell search is
effective especially on the upper levels to find out the correct
track, which yields the best target cell; however, the
computational cost increases significantly especially on the lower
levels. In order to find a trade-off, a hybrid cell search algorithm
can be used especially for very large databases. From the top level
till a certain depth (say PECS_DEPTH), Pre-emptive cell search
is applied to guarantee to follow the right track and from this level
downwards MS-Nucleus is applied. In this way the overall
computational cost can be significantly reduced whilst causing
only a minimal corruption. Note also that although hybrid mode is
enabled during the incremental construction of any database,
when the database height is below PECS_DEPTH+1, only Pre-
emptive cell search will be used, and afterwards the hybrid cell
search mechanism is used.

2) Item Removal Algorithm for HCT: This is another level-
based operation, which does not require any cell search operation.

However upon its completion it may cause several post-
processing operations, affecting the overall HCT body. As
explained earlier, if multiple items need to be removed at a
particular (target) level, then they are removed one subgroup at a
time where items in a subgroup belong to the same cell.
Therefore, without loss of generality we will introduce the
algorithmic steps assuming that all items to be removed belong to
a single cell. Let ArrayIR[] be the array for the items (which
belong to an owner cell, say cell-O) to be removed from (target)
level, levelNo. The Remove algorithm can then be expressed as
follows:

D. HCT Indexing
HCT can index a multimedia database using any set of

available features, as long as a fusion mechanism and a similarity
measure are provided. There are mainly two distinct operations
for HCT indexing. The incremental construction of the HCT body
and an optional periodic fitness check operation over it. In the
following sub-sections, we will present the algorithmic details of
both operations.
1) HCT Incremental Construction: Let G represent the indexing
genre (visual and/or aural) for a multimedia database, D. Let
ArrayI<G> be the item array containing items that are to be
appended to D. Initially, D may or may not have a HCT indexing
body. If not then all the (valid) items within D will be inserted
into ArrayI<G> and a new HCT body is constructed; otherwise,
the available HCT body is first loaded and updated for the
newcomers present in >< GArrayI . Accordingly, the HCT
indexing body construction algorithm, HCTIndexing, can be
expressed as follows:

PreemptiveCellSearch (ArrayCS[], nextItem, curLevelNo)
 By searching ArrayCSCCOO ii

i
N

i
N ∈∀∧∈∀ Find

the most similar item, item-MS and mind .
 If(curLevelNo = levelNo + 1) then do:

o Let the owner cell of item-MS: cell-MS in the (target)
level (with level number: levelNo)

o Return cell-MS
 Create a new array for cell search: NewArrayCS[] = ∅
 For ArrayCSCCOO ii

i
N

i
N ∈∀∧∈∀ , do:

o If(min)(),(dOrOOd i
N

i
Ni ≤−=Δ) then do:

 Find the owner cell of (nucleus) item i
NO in the

lower level: i
NCcell −

 Append i
NCcell − into NewArrayCS[]

 End loop.
 Return PreemptiveCellSearch (NewArrayCS[], nextItem,

curLevelNo-1)

Remove (ArrayIR[], levelNo)
 Let top level number: topLevelNo and the single cell in top level:

cell-T
 Let the Owner (target) cell in level levelNo: cell-O
 Remove items in ArrayIR from cell-O
 Check cell-O for Post-Processing:

o If cell-O is depleted (cell-death) then do:
 If(levelNo = topLevelNo) then do:

• Remove cell-O=cell-T
• Remove the top level from HCT body

 Else do:
• Let item-O be the old nucleus item
• Remove (item-O, levelNo+1)

o Else if cell-O is split then do:
 Let item-O, item-N1 and item N2 are old nucleus item

and two new nucleus items.
 Remove (item-O, levelNo+1)
 Insert (item-N1, levelNo+1)
 Insert (item-N2, levelNo+1)

o Else if nucleus item is changed within cell-O then do:
 Let item-O and item-N be old and new nucleus items.
 Remove (item-O, levelNo+1)
 Insert (item-N, levelNo+1)

Return.

HCTIndexing (>< GArrayI , G, D)
 Load and activate HCT indexing body in genre G for database

D.
 For ><∈∀∀ GArrayIOO i

G
i
G , do: // For all items

in the array, perform incremental insertion.
o Insert (i

GO , 0) // Insert ith item into HCT body.
 End loop.

MM001177.R2 Hierarchical Cellular Tree: An Efficient Indexing Scheme for Content-based Retrieval on Multimedia Databases

8

2) HCT Fitness Check: The fitness check is an optional operation
that can be performed periodically during or after the indexing
operation. It aims to minimize the corruption, which might have
occurred due to the only uncontrollable factor during the
formation of the HCT body that is the order of item insertions. In
general multimedia database items are inserted in any order,
which might yield an ever-growing corruption if not handled
appropriately. Fitness check is implemented with two distinct
operations, namely Outliers Check and Cell Merging, which are
presented next.

I. Outliers Check
The objective of this operation is to reduce the “crowd effect” by
removing redundant minority cells (i.e. cells with only one or a
few items in it) from the HCT body. Due to the insertion order of
items, one or some minor group of items may form a cell at the
initial stages of the HCT construction operation. Later on, some
other major cells may become more suitable for hosting those
items, which have already been trapped in the minor cells. Note
that such minority cells create an over-crowded scheme on their
level as well as on the upper levels since each one of them has a
representative (nucleus) item hosted by a cell on the upper level.
So the idea is to get rid of such cells and feed their items back to
the system, expecting that some other mature cells might now
host them. Note that after they are inserted to the most suitable
cell on the level, the host cell may still refuse them if their
insertion results in a significant degradation on the cell
compactness and hence causing the cell to split. In such a case,
the original part of the host cell and the new item will be assigned
to one of two newborn cells. This is the case where they are in
fact the outliers that no other (similar) cell exists yet to host them
and thus they only have the privilege to stay in a minority cell;
whereas the others are successfully hosted by mature cells.

Once completed the primary expectation from this operation is
a percentage increase for the mature cells along with their item
coverage on a particular level without causing significant
degradations in the overall compactness. This operation is
performed for all levels in decreasing order (top to bottom) except
the top level. The reason for such ordering is because the
(incremental) insertion operation on a particular level requires a
cell search (Pre-emptive) operation performed on all higher
levels. So performing an Outliers Check operation first on upper
levels is likely to improve the performance of fitness check
operations performed on lower levels.

II. (Mature) Cell Merging
Another consequence of uncontrolled order of item insertion is
the erroneous splitting of cells during the early stages of HCT
body formation. Such cases occur especially when incoming
items cannot form a focused cell initially due to the lack of items
present (to make the cell compact or dense enough) or a distinct
set of items initially inserted and more than one cell was needed
to achieve the required compactness level. As an illustrative
example shown in Figure 3, such an initial cell splitting decision
might have been reasonable and necessary for the current set of
items so far present in the cell; however, with the arrival of the
newcomers, the two cells can be conveniently merged into a
single cell, which still achieve a sufficient compactness level.

Cell merging operation traces the items on the upper level,
using the MST branch information of each cell. The closest
(minimal) distance eliminates the need for searching the most
suitable candidate cells for merging on the lower level. Let d be
the distance (branch weight) of two nucleus items on the upper

level with covering radii, 1
Cr and 2

Cr . If 21
CC rrd −≤ then

merging can directly be granted since one cell can cover the other
cell items. In a generic case, a more flexible condition can be
applied, such as 21. CC rrkd −≤ where 1>k . If the merged cell

cannot provide a compactness value that its level requires, it will
be subject to a mitosis operation anyway during the post-
processing stage performed after the merging operation.
Otherwise the post processing operation removes both the (old)
cells and their nucleus items from the HCT body and inserts the
new (merged) cell and its nucleus item instead.

1C
3C′

2C

4C′

3C

4C

21+′C
HCT with 100 items in 4 cells HCT with 1000 items in 3 cells

Figure 3: Merging operation is applied over cells 1C and 2C .
Due to space limitations, the algorithmic details of both

Outliers Check and Cell Merging are skipped in this article.

IV. PQ OVER HCT
Progressive Query (PQ) [15] is a recently proposed retrieval
scheme. It basically presents Progressive Sub-Query (PSQs)
retrieval results periodically to the user and allows the user to
interact with the ongoing query process. Among other traditional
query techniques such as exhaustive search based Normal Query
(NQ), kNN and range queries, PQ presents the following
significant innovative features:

• It is an efficient technique, which works within both
(similarity) indexed and non-indexed (meaning that no similarity
indexing method applied) databases onto which it is the unique
query method that may provide “faster” retrievals (than NQ and
requires less memory and CPU power.

• The most important advantage is that it provides user
interaction with the ongoing query operation. The user can
browse the PSQ results so far obtained, can perform “relevance
feedback”, and can stop the query operation if satisfactory results
are obtained so far.

• It can also be applied to (similarity) indexed databases
efficiently (to get the most relevant retrieval results in the fastest
possible way) and in this case it shows “dynamic kNN/range
query” like behavior where k (or ε) increases gradually with time
and hence the user can have the advantage of assigning it by
seeing (and judging) the results.

Due to these advantages, we use PQ to perform similarity
query operations over HCT. Before focusing on the details of PQ
operations over HCT we first present a brief overview about PQ
in the next sub-section.

A. PQ Overview
Basically PQ performs over a series of sub-queries, each of which
is a fractional query process performed over a sub-set of database
items. The items within a sub-set can be chosen by any
convenient manner such as randomly or sequentially but the size

MM001177.R2 Hierarchical Cellular Tree: An Efficient Indexing Scheme for Content-based Retrieval on Multimedia Databases

9

of each sub-set is determined with respect to a suitable (to human
perception) unit such as time (period, ptt =).

PQ can be performed over any indexed database as long as a
query path (QP) can be formed over the clusters (partitions) of
the underlying indexing structure. The most advantageous way to
perform PQ is to form QP according to indexing structure so that
the most relevant items can be retrieved in earlier periodic
updates of PQ as it proceeds over QP. More detailed information
about PQ along with a hypothetical QP formation can be found in
[15].

B. PQ Operation over HCT
When an indexing structure is available for a database, the

most advantageous way to perform PQ is to use the indexing
information so that the most relevant items can be retrieved in
earlier PSQ steps. As an example, Figure 4 shows a hypothetical
clustering scheme and the formation of the query path (QP) over
which PQ will proceed during its run-time. This sample
illustration shows 4 clusters (partitions or nodes), which contain a
certain number of items (features) and the QP is formed
according to the relative (similarity) distance to the queried item
and its parent cluster. Therefore, PQ will give the priority to
cluster A (the host), then B (the closest), C, D, etc. Note that the
QP might differ from the final retrieval result depending on the
accuracy of the indexing scheme. For instance, query path gives
priority to item B2 on the search with respect to item C4 but item
C4 may have more similarity (relevancy) with respect to the
queried item A2. When the retrieval results are formed it will
eventually be ranked higher and presented earlier to the user by
PQ. Even though PQ corrects this misleading result due to the
erroneous indexing (note that in this case item C4 should have
belonged to cluster B, not C), as a possible consequence of this,
the retrieval of C4 might be delayed to the next periodic PSQ
retrieval.

PQ operation over HCT is executed synchronously over two
parallel processes: HCT tracer and a generic process for PSQ
formation using the latest QP segment. HCT tracer is a recursive
algorithm, which traces among the HCT levels in order to form a
QP (segment) for the next PSQ update. When the time allocated
for this operation is completed, this process is paused and the next
PSQ retrieval result is formed and presented to the user. Then
HCT tracer is re-activated for the next PSQ update and both
processes remain active unless the user stops PQ or the entire PQ
process is completed.

As mentioned earlier, QP is formed segment by segment for
each PSQ update. Once a QP segment is formed, then the
periodic sub-query results are obtained within this segment (group
of items) and then this result (the sorted list of items) is fused
with the last PSQ update to form the next PSQ retrieval result.
Starting from the top level, HCT tracer algorithm recursively
navigates among the levels and their cells according to the
similarity of the cell nucleuses. This is similar to the MS-Nucleus
cell search process, only this time it will not stop its execution
when it finds the “most similar” cell on the ground (target) level
but continues its sweep by visiting the 2nd most similar, then 3rd
and so on, while inserting all visited cell items on the ground
level to the current QP segment. Starting from the top level, each
cell it visits on an intermediate level (any level except the ground
level), HCT tracer forms a priority (item) queue, which ranks the
cell items according to their similarity with respect to the query
item. Note that these items are nothing but the nuclei on the lower
level. When the tracing operation is completed on the lower level,

HCT tracer retreats to the upper level (cell) where it came from.
The process is terminated when the priority queue of the top level
(cell) is depleted, which means, the whole HCT body has been
traced. Within the implementation of HCT tracer, we further
develop an internal structure that prevents redundant similarity
distance calculation, that is, the similarity distances between the
items of the cells in intermediate levels are calculated only once
and used in the lower levels whenever needed. In fact this is a
general property of overall PQ operation, all the
(computationally) costly operations such as similarity distance
calculations, loading the features from disc to the system memory,
etc. are performed only once and shared between the processes
whenever needed.

Figure 4: Query path formation in a hypothetical indexing

structure.
The following HCTtracer algorithm implements HCT

tracer operation, which basically extracts the next QP segment
into a generic array, ArrayQP[]. It is initially called with the
top-level number (topLevelNo) and an item (item-MS) from
the single cell on the top level.

Let item-MS be the (next) most similar item to the query
item, item-Q, on the (target) level indicated with a number,
levelNo. HCTtracer algorithm can then be expressed as
follows:

Note that this algorithm is executed as a separate process
(thread) and can be paused externally from the main PQ process
when the time comes for the next PSQ update. An example HCT
tracer process for an external query item, Q, is illustrated in
Figure 5.

HCTtracer (ArrayQP[], levelNo, item-MS)
 Let cell-MS be the owner cell of item-MS.
 If (levelNo = 0) then do: // if this is ground level

o Append all items in cell-MS into ArrayQP[].
o Return.

 Else do: // if this is an intermediate level
o Create the priority queue of cell-MS: queue-MS.

o For MSqueueOi
N −∈∀ , do: // for all sorted

(nucleus) items do:

 HCTtracer (ArrayQP[] , levelNo-1, i
NO)

 Return.

MM001177.R2 Hierarchical Cellular Tree: An Efficient Indexing Scheme for Content-based Retrieval on Multimedia Databases

10

a

c
b

c

d
e

a b f

d c e a b
f

sp

r

h

g

i m

l

n

k

j

o

A CB

FEDCBA

A

Level 2 = Top Level

Level 1

Level 0 = Ground Level

QQuery Item:

1
2

a
c
b

3

Q A

1
2

d
e
c

3

Q A
1 a

Q B
1
2 f

b

Q C

3

11

3

1
12

2

1 1 2

2

11 2

23
3

b rQP(Q) p s f c i e j k l m n d g h a o

PQ operation

165 43 2

Figure 5: QP formation on a sample HCT body.

V. HCT BROWSING
Generally speaking, there are two ways to retrieve items from a
(multimedia) database: through a query process such as query by
example (QBE) and browsing. In the previous section, an
efficient query method (PQ) implementation over the proposed
indexing scheme, HCT was presented. Moreover, HCT can
provide a basis for accomplishing an efficient browsing scheme,
namely HCT Browsing [16]. The hierarchic structure of HCT is
quite appropriate to give an overview to the user about what lies
under the current level so that if well supported via user friendly
GUI, HCT Browsing can turn out to be a guided tour among the
database items. The details of HCT Browsing and the necessary
GUI support within MUVIS framework can be found in [16].

Two examples of HCT Browsing with inter-level navigations
are shown in Figure 6. In both illustrations, the user starts the
browsing from the 3rd level within a 5-level HCT body and, due to
the space limitations only some portion of HCT body (where the
browsing operation is performed) is shown. Note that in both
examples, HCT indexing scheme provides more and more
“narrowed” content in the descending order of the levels. For
example, the user chooses an “outdoor, city, architecture” content
on the third level where it yields “outdoor, city, beach and buses”
content carrying cell on the second level. The user then chooses a
multi-color “bus” and then navigating down to the first level, it
yields a cell, which owns mostly “buses” with different colors,
and finally choosing a “red bus” image (nucleus item) yields the
cell of “red buses” on the ground level. Similar series of examples
can also be seen in the sample HCT Browsing operation within a
texture database. The cells are getting more and more compact
(focused) in the descending order of level and the ground level
cells achieve a “clean” clustering of texture images showing high
similarity.

Level 3

Level 2

Level 1

Level 0

Level 3

Level 2

Level 1

Level 0

Figure 6: Two HCT Browsing examples both of which
start from the third level within Corel_1K (top) and
Texture (bottom) databases. The user navigates among
the levels shown with the lines through ground level.

VI. EXPERIMENTAL RESULTS
This section is divided into three sub-sections, each includes
several experiments performed to test the clustering, indexing and
retrieval (via PQ) capabilities of HCT and perform comparative
evaluation with M-Tree. It is, however, not straightforward to do

MM001177.R2 Hierarchical Cellular Tree: An Efficient Indexing Scheme for Content-based Retrieval on Multimedia Databases

11

a direct performance comparison between HCT and M-Tree due
to the strict parameter dependency and various internal modes of
M-Tree. For instance an M-Tree body (index structure) with
M=10 will be completely different than the one with M=11.
Similarly using one of different split policies (Balanced,
Generalized Hyperplane, etc.) or promote methods (m_RAD,
mM_RAD, M_LB_DIST, RANDOM, etc.) [10] will result in a
completely different indexing body than using another. Therefore,
we do the partial comparisons between major M-Tree and HCT
properties such as fixed (with a certain M) versus flexible cell size
(HCT) policy and MS-Nucleus versus Pre-Emptive cell search
algorithms. Section A presents the clustering performance of HCT
on synthetic databases, which contain a certain number of natural
clusters varying in size, form, density and shape. Computational
complexity and clustering accuracy of HCT will be presented and
especially the “cost vs. accuracy” analysis for the periodic fitness
check will be performed. The rest of the sections are devoted to
indexing (and retrieval via PQ) performance of HCT in real
multimedia databases. In order to present the experimental
conditions, Section B briefly introduces MUVIS and particularly
MBrowser application under which HCT Browsing and PQ over
HCT retrieval schemes are primarily developed and tested.

Afterwards, we begin the comparative evaluation of HCT versus
M-Tree indexing policies, particularly focusing on the amount of
cell corruption with the increasing database size. Finally, Section
C is devoted to experimental results obtained from PQ over HCT
operations and their evaluation with respect to Sequential PQ and
NQ.

A. HCT Clustering Performance in Synthetic Databases
HCT in the most basic terms can function as a clustering
algorithm, which groups items with respect to their proximity in
multidimensional (feature) space. In order to test its clustering
performance, we create several synthetic databases, which
provide straightforward (clean) clusters for the human eye in 2-D
for illustration purposes. Four databases are depicted in Figure 7
(left) with various numbers of items, which are represented by
white pixels distributed in a 2-D space according to some
formations (clusters). The performance evaluation includes both
computational complexity measurements and clustering accuracy
with and without the use of the optional (periodic) Fitness Check
operation in order to examine its effect on the overall
performance.

Figure 7: 4 synthetic databases with different scales and dimensions (left) and the cluster boundaries obtained via HCT
(right)

1) Clustering Accuracy: HCT naturally forms the clusters on the
ground level (level 0) where each cell corresponds to a unique
cluster. In order to test the clustering accuracy of HCT, the
optional HCT operation, periodic Fitness Check is enabled to see
whether or not HCT can converge to the (natural) clusters
present; otherwise, early mitosis operations may cause
irreversible clustering errors. Another important factor in the
evaluation is to examine HCT performance against potential
variations in database size and cluster properties. The examples
shown in Figure 7 are selected particularly to provide significant
variations in the shape and size of the clusters, cluster density and
inter-cluster distances. Moreover, in order to simulate dynamic
construction of such a database, each synthetic example is formed
by different numbers of items and clusters into which the items
(white dots) are inserted one by one (i.e. incremental HCT
formation) in a random order to examine its robustness against

such random arrivals. The same HCT instance is used (with the
same HCT parameters) to perform clustering all of the examples
and the results are shown in Figure 7 (right). Each contour shown
on the right of Figure 7.represents a cell formed at the end of HCT
formation process, and if more than one cell is formed for a
cluster, then those cells are indicated with dark and light shading.
Due to random insertions, we also observed that the clustering
scheme can be slightly different, i.e. say one or a few changes
may occur, so each example is clustered 10 times and a typical
(the most frequent) clustering scheme is shown. It was also
noticed that the number of cells is always equal to or larger than
the number of clusters, i.e. a slight over-segmentation may
happen, but no under-segmentation. In order to show the loose
parameter dependency of HCT, for each experiment we used
random values of 0, kN M and T

MN within the following values:

MM001177.R2 Hierarchical Cellular Tree: An Efficient Indexing Scheme for Content-based Retrieval on Multimedia Databases

12

3012,7.0,25.0,126 0 ≤≤≤≤≤≤ T
MM NkN . The following

regularization function is used for clustering.

CCCCCCCCCCC NwrKNwrfCF)max()()),max(,,,(σμσμ +== (4)

where K, is a scaling coefficient; Cμ and Cσ are the mean and

standard deviation of the MST branch weights, Cw , of cell C;

Cr is the covering radius; and MC NN > is the number of items

in cell C. With an increasing number of items in the cell (CN)

and in order to keep the cell compact (i.e. LC CThrCF ≤),

MST branch statistics such as Cμ , Cσ , max(Cw) and

Cr should all remain small in order to yield a more focused
cell. Otherwise, the cell undergoes a mitosis operation, which
eventually reduces CN and max(Cw) and separates the
irrelevant item or group of items from the cell.

Figure 8: Ground level LCThr (top) and cell number
(bottom) plots for the example (A) in Figure 7.

During the clustering experiments performed, HCT with
periodic Fitness Check operation achieves a high clustering
accuracy and also robustness against the random arrivals of the
items. Moreover, when a cluster is split into multiple cells, in
most cases (>95%) this happens to the same clusters, and these
are the ones with loose item density and/or big and long shapes.
This is an expected result since the regularization function for
compactness feature penalizes such cases with parameters such

as Cμ , Cσ and Cr . This can be easily seen in examples A and
C (the longest clusters) and B (the biggest/loose clusters) in
Figure 7. Furthermore, despite the significant variations in inter-
cluster distances, number of items per cluster, shape/density of
each cluster and the total number of clusters/items in each
example, HCT accurately extracts the true clusters. In this aspect,
one can conclude that the Median operator (with a trend factor,
i.e. 8.02.0 0 << k) for the estimation of LCThr value for a
particular level L works effectively to allow the cells to grow all
the way to the “true” boundaries of each cluster but surely
avoiding to merge multiple clusters (separated with a certain
inter-cluster distance) into one cell. In the experiments
performed, LCThr shows a smooth convergence towards a steady
value (after some initial transient) since the cells become more
compact (denser) due to ever-increasing amount of items in the
cells. As a typical example, the plots shown in Figure 8 illustrate

the dynamic LCThr setting (top) and the number of cells
(bottom) converging to the close vicinity of true number of the
clusters (with incoming items) during the HCT formation for the
clustering example (A) in Figure 7.

Figure 9: Plots showing SD Computations with (top) and
without (bottom) Fitness Check during HCT formation of the

example (D) in Figure 7.

Figure 10: Plots showing SD Computations (top) with and
(bottom) without Fitness Check during HCT formation for

example (A) in Figure 7.

2) Computational Complexity Analysis: The computational
complexity analysis is based on the amount of (dis-) similarity
(proximity) distance computations performed during the
incremental formation of the HCT body. These computations are
performed for three individual HCT operations:

• (Pre-emptive) cell search: the computations performed to
find out a host cell on a certain level.

• Item insertion into a host cell: the computations
performed to insert a new item into a cell MST.

MM001177.R2 Hierarchical Cellular Tree: An Efficient Indexing Scheme for Content-based Retrieval on Multimedia Databases

13

• Item(s) removal from a cell: the computations performed
to rebuild the cell MST after item (or items) removal.

So the total number of computations is the sum of the ones
from the individual operations as listed above and it can be
measured with and without performing periodic Fitness Check
operation to see its effect on the computational complexity. Two
plots representing the HCT formation of the clustering examples
(A) and (D) in Figure 7 are shown in Figure 10 and Figure 9
respectively.

The Fitness Check operation usually increases the
computations for the item insertions and reduces the ones for cell
search since its basic outcome is the increase in the cell
populations and thus reduction in the HCT height (total number
of levels). However, the total number of computations is
increased due to the fact that the (Pre-emptive) cell search
requires))log((nnO ; whereas, dynamic MST formation (the

operation for item insertion) requires)(2nO operations.
Especially for the highly populated examples, where one or more
clusters host a massive number of items, the item insertion
operations will eventually dominate the other two and therefore,
becomes the major part of overall computations. A typical
example is given in the example (A) in Figure 7 (6 biggest
clusters have more than 2000 items each) and its performance
plot shown in Figure 10 (left). In such a case the order of

computations will be between)(2nO and))log((nnO , see
Figure 10 (left). On the other hand, when the cluster sizes are
limited within a reasonable upper bound, HCT formation can still
be a))log((nnO operation even with the presence of periodic
Fitness Check operation, as one typical example is given in the
example (D) in Figure 7 and its plot is shown in Figure 9 (left)
3) M-Tree vs. HCT: Two major properties of HCT, flexible cell
size and Pre-emptive cell search are evaluated against M-Tree
policies (i.e. fixed cell size: M, and MS-Nucleus cell search) in
terms of clustering accuracy and computational cost. In fact it is
obvious to see that no matter how M is chosen, M-Tree is bound
to fail to extract the natural clusters showing significant variations
in size, shape and density. Setting M too big will cause erroneous
merging of small clusters to their close neighbors (under
clustering) or setting M too small will fraction several (big)
clusters into a large number of cells (over clustering) and hence
the overall indexing body will be too crowded and not so useful
for any indexing or clustering purposes. Table I presents the
number of cells and SD computations for the examples in Figure 7
for three different HCT construction scheme. The first and second
rows present regular HCT constructions with and without
applying periodic Fitness Check (FC), the third row presents
clustering with M-tree policies (with M=12 and using MS-
Nucleus cell search).

Table I: Number of cells and SD computations for the synthetic examples shown in Figure 7.

 Number of Cells (Clusters) Number of SD Computations (x1000)
 (A: 48) (B: 10) (C: 59) (D: 42) (A) (B) (C) (D)

HCT (with FC) 50 13 62 42 17945.4 55.6 8993.96 192.27
HCT (no FC) 153 55 179 146 3189.5 23.52 1437.03 136.03

M-Tree (M=12) 3744 108 2330 377 2038.13 25.94 1104.74 123.38

As it can be clearly seen from this table, M-Tree policies
cannot cope with any clustering scheme and usually result in an
extremely over-crowded clustering whereas even without the
presence of periodic Fitness Check, HCT policies, especially the
flexible cell size property can mostly avoid such a degraded
scheme and achieves a reasonable clustering performance with
slight increase in the computational cost. Of course, the best
clustering performance is obtained with the use of the periodic
Fitness Check; however, the computational cost is drastically
increased especially when there are cells carrying massive
number of items (e.g. A and C in Figure 7) due to the
aforementioned reason.

B. HCT Multimedia Indexing within MUVIS
MUVIS framework is developed to bring a unified and global
approach to indexing, browsing and querying of various
multimedia types such as audio/video clips and still images. One
of its major applications is DbsEditor, which performs offline
feature extraction and indexing operations along with some basic
database management tasks such as creation and editing.
MBrowser is the primary media browser and retrieval application
into which PQ technique is integrated as the primary retrieval
(QBE) scheme. A sequential scan based Normal Query (NQ) is
the alternative scheme within MBrowser. Both PQ modes
(sequential and over HCT) and NQ can be used for retrieval of
multimedia primitives with respect to their similarity to a queried
media item (an audio/video clip, a video frame or an image).

Similarity distances will be calculated by the particular functions,
each of which is implemented in the corresponding visual/aural
feature extraction (FeX or AFeX) modules. More detailed
information about MUVIS can be found in [18], [19] and [24].

In the experiments performed in this section, we used 6 sample
(multimedia) databases:

1) Open Video Database: This database contains 1130
video clips, each of which is downloaded from “The Open Video
Project” web site [26]. The clips are quite old (from 1960s) but
contain color video with sound. The total duration of the database
is around 20 hours.

2) Corel_1K Image Database: There are 1000 medium
resolution (384x256 pixels) images from diverse contents such as
wild life, city, buses, horses, mountains, beach, food, African
natives, etc.

3) Corel_10K Image Database: There are 10000 low
resolution images (in thumbnail size) from similar contents with
Corel_1K.

4) Corel_60K Image Database: The entire Corel database
with 60000 medium resolution images.

5) Shape Image Database: There are 1500 black and white
(binary) images that mainly represent the shapes of different
objects such as animals, cars, accessories, geometric objects, etc.

6) Texture Image Database: There are 1760 texture images
representing the pure textures from several materials and products.

MM001177.R2 Hierarchical Cellular Tree: An Efficient Indexing Scheme for Content-based Retrieval on Multimedia Databases

14

Table II: The databases and their features.

Feature Type Texture Color Shape Audio

Features Used Gabor [23]
GLCM [27]

HSV Hist.
YUV Hist. Edge Direction Hist. MFCC [30]

Database Number 1,2,3,4 and 6 1,2,3 and 4 1,2,3,4 and 5 1

Table II presents what features are used in the sample

databases. All experiments are carried out on a P5 1.8 GHz
computer with 1024 MB memory. In order to have unbiased
experimental evaluations, each query experiment are performed
using the same queried multimedia item with the same instance of
MBrowser application. The evaluations of the retrieval results by
PQ are performed subjectively using ground-truth method, i.e. a
group of people evaluates the query results of a certain set of
retrieval experiments, upon which all the group members totally
agreed about the query retrieval performance. Among these a
certain set of examples were chosen and presented in this article
for visual inspection and verification.
1) HCT vs. M-Tree Indexing: In this section we will particularly
make the comparative performance evaluations based on the cell
search algorithms and cell size policies of HCT and M-Tree. The
sample MUVIS databases are indexed using both (HCT and M-
Tree) policies. We used typical settings (6=MN , 24=T

MN) for
all the experiments with the same regularization function given in
Eq. (4). For the numerical comparison, the ground level statistics
are used to measure the average cell compactness and the total
amount of computations performed during the entire indexing

process. The cell compactness is a measure of how focused the
cell items are and it is therefore proportional with the number of
items, CN , in a cell C and inversely proportional with the

covering radius, Cr . In this way it can be defined for any cell

(mature or not) containing multiple items (i.e. 1>CN). So the
following expression, which is nothing but the ratio of the average
cell size to average covering radius can be used to calculate the
average cell compactness for a level, l, in HCT.

1)(

)(

>∈

∈

∑
∑

=

CNlLC
C

lLC
C

l
CC r

N
μ (5)

where L(l) is the set of cells on level l. presents the following
statistics obtained from the sample databases by using both M-
Tree (with M=12) and HCT policies: the average cell compactness
for ground level (0

CCμ), the total number of cells and the
percentage of mature cells along with the number of SD
computations.

Table III: Statistics obtained from the ground level of HCT indexing of the sample MUVIS databases.

Open
Video

Open
Video Statistics

(l = 0)
Construction

Policy (Visual) (Aural)
Corel_1K Corel_10K Corel_60K Shape Texture

M-Tree 5.971 3.469 5.007 5.084 8.094 31.231 57.861
HCT 7.418 5.136 6.307 17.356 26.142 39.688 72.599

HCT (with FC) 8.838 6.825 8.065 21.522 34.004 43.117 85.62
M-Tree 227 240 248 2116 7864 260 306

HCT 203 164 223 584 2304 227 288 Cell
Number

HCT (with FC) 156 85 149 367 1386 168 220
M-Tree 70.343 67.556 72.57 1306.23 12604.76 82.55 95.629

HCT 244.814 162.271 191.14 4439.03 73782.01 251.21 240.802
SD Comp.
Number
(x1000) HCT (with FC) 301.962 159.511 251.945 4649.23 103427.14 288.74 277.382

The numerical results given in Table III approve that two key

HCT policies, namely Pre-emptive cell search algorithm and
flexible cell size property, achieve a major compactness
improvement with respect to what M-Tree can establish. One of
the main reasons is that M-Tree policies usually produce
excessive (more than necessary) number of cells, as we named as
“the crowd effect” or in other words an over-crowded scheme,
which is mainly due to fixed cell size property and this fact can
be clearly seen by the cell number data in Table III. Therefore,
the group of media items having the same content is fractioned
into numerous cells, which in turn makes the indexing body over-
crowded. Such a crowded indexing body further makes the MS-
Nucleus cell search algorithm less accurate, inducing more and
more corruption proportional with the database size due to the
reasoning explained earlier. Once the corruption evolves into a
certain level, it further causes more corruption in a positive
feedback mechanism since any statistical measures from the over-

crowded and corrupted cells will be less reliable. So the speed and
accuracy of cell search will further be degraded. As a result all the
M-tree levels, particularly the ground level where all the database
items are present, will contain smaller and corrupted (loose) cells
(e.g. see Figure 11). This can be verified by comparing the
respective values of 0

CCμ and cell number data obtained from
both approaches on Corel_1K, Corel_10K and Corel_60K
databases.
 Apart from the database size, the reliability (discrimination
power) of the feature(s) is also an important factor. With the
improved discrimination factors of the features, more robust
similarity distance measures can be obtained and hence even more
focused cells can be formed using Pre-emptive cell search
algorithm. Using ground-truth methodology over several QBE
oriented retrieval experiments, the most reliable features are
proven to be the texture features (GLCM and Gabor) extracted

0
CCμ

MM001177.R2 Hierarchical Cellular Tree: An Efficient Indexing Scheme for Content-based Retrieval on Multimedia Databases

15

particularly for Texture database. Hence, a relatively high
difference in terms of average cell compactness can be seen in
Texture database which has a rather small size (e.g. only 1760
images). As some visual examples, Figure 11 shows four ground
level cells obtained from both indexing policies over this
database. It is obvious from the figure that the cells from the
proposed HCT policies show a high compactness (textural
similarity) level; whereas, M-tree cells (with M=12) show signs
of corruption (dis-similarity) among its items. It can be thought
that with a smaller M (i.e. M=6), such irrelevant images can be

(forcefully via split mechanism) removed from the host cell so as
to yield a focused cell. However, this will cause a massive “crowd
effect” for the cells at any level, henceforth causing more
corruption (due to its sub-optimum cell search, MS-Nucleus) since
we know that there are several groups in this database having a
large number of images (i.e. >60) with the same texture category.
In short no matter what value is set for M, as long as the cell size
is kept fixed and MS-Nucleus cell search is used, M-Tree is bound
to induce an indefinite level of corruption into any multimedia
database.

(c)HCT cell M-Tree cell

(b)HCT cell M-Tree cell(a)HCT cell M-Tree cell

(d)HCT cell M-Tree cell

Figure 11: 4 ground level cells (a, b, c and d) in Texture database indexed by HCT (left) and M-Tree (right) policies.

The primary cost for using HCT policies is the increased
computational complexity for the construction of the indexing
structure. However, since indexing is an off-line process that is
performed only once during the creation of the database, this cost
can be compensated by the accuracy and time gains during query
and browsing, both of which are real-time processes that are
subject to be performed several times during the lifetime of any
multimedia database. Moreover M-tree indexing over a large
multimedia database might cause such a corruption level that
makes the indexing nearly useless for any content-based querying
and browsing purposes.

C. PQ over HCT
Two tests are performed to evaluate the performance of PQ
operations over HCT indexing structure. First the relevancy of the
Query Path (QP) where PQ will proceed can be examined from a
typical QP (similarity distance) plot. Such a plot can indicate
whether or not the order of the items within QP is formed in
accordance with the similarity of the query item so that the most
similar items can be retrieved earliest. In Figure 12 the query
image comes from a group of 97 similar images among 1000
images in Corel_1K database. It can be seen from the figure that
HCT tracer successfully captures all relevant items in the earliest
possible order, i.e. the beginning of QP. Therefore, PQ operation
will be ranking and presenting them (first) to the user
immediately after the query operation is initiated. Another

important remark should be made about the “up-hill trend” of the
QP plot, that is, it traces along with the increasing order of SD
(dissimilarity) as intended.

Figure 12: QP plot of a sample image query in Corel_1K

database.
The second performance evaluation is about the speed (or

timing) of PQ over HCT operation compared with the Sequential
PQ and NQ. In an earlier work [17] where the initial version of
HCT was first proposed, a promising gain in speed was observed
for small multimedia databases. In the current HCT, particularly
designed for large databases, we perform several retrieval
experiments in the form of QBE on large databases, such as
Corel_60K database, where 100 PQs and NQs are performed with

MM001177.R2 Hierarchical Cellular Tree: An Efficient Indexing Scheme for Content-based Retrieval on Multimedia Databases

16

100 query images bearing a pure content. We used sec1=pt

and thus measured the query time to retrieve relevant images (a
maximum of one miss was allowed) among the first (highest
ranked) 12 results. The query histograms are drawn according to
the measurements and shown in Figure 13.

As expected PQ over HCT achieves the earliest retrieval times
where almost half of the retrievals are achieved within one
second and only in 7 (out of 100) PQ over HCT experiments
resulted in retrieval times exceeding 4 seconds. As a traditional
query mechanism, NQ in general provides the slowest retrieval
speed, almost all in 18 seconds, only after the full-scan search is
completed over the entire database. Sequential PQ, on the other
hand, provides a significantly varying scheme since it is designed
for the databases with no similarity indexing structure (hence
HCT is not used at all) and the majority of the query results
provides the required amount of relevant items after 11 or more
seconds.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PQ
 o

ve
r H

C
T N
Q

0

10

20

30

40

50

60

70

80

90

100

n
u

m
 b

 e
 r

 o
 f

 q
 u

 e
 r

i e
 s

query time (sec)

Query Time Histograms

PQ over HCT

Sequential PQ

NQ

Figure 13: The query time histograms obtained from 100 PQs

(using both modes) and NQs in Corel_60K database.

VII. CONCLUSIONS
In this paper, we proposed HCT indexing structure designed for
multimedia databases to achieve the following innovative
properties:

• HCT is a dynamic, parameter independent and flexible
cell (node) sized indexing technique, which is optimized to
achieve as focused cells as possible.

• HCT is particularly designed for indexing multimedia
databases, which are created incrementally and subject to random
item insertions and removals. Furthermore, their visual and aural
features are noisy descriptors and usually have a limited
discriminative power.

• By means of the flexible cell size property, one or the
least number of cell(s) are created to host the group of similar
items, which in effect reduces the performance degradations
caused by “crowd effect” that is a natural deficiency for M-Tree
due to its fixed cell size policy.

• During their life-time cells are put under a close
surveillance of their levels in order to enhance the compactness
using mitosis operations whenever necessary to get rid of
dissimilar item(s). Furthermore, for an item insertion, a pre-
emptive cell search technique is used to find out the most suitable
(target) cell on a host level. In this way another major source of
corruption due to sub-optimum M-Tree cell search technique
(MS-Nucleus) is also avoided.

• HCT has a dynamic reaction capability in such a way
that the cell and level primitives are updated whenever the need

arose. For example a cell nucleus item is changed whenever a
better candidate is available and once a new nucleus item is
assigned, its owner cell in the upper level is determined after a
new cell search instead of using the old one’s owner cell. Such
instantaneous reactions keep the HCT body intact by doing the
required updates after any HCT operation.

• By means of a dynamic MST formation within each cell,
the optimum nucleus item can be assigned whenever necessary
and with no extra cost. Furthermore the optimum split
management can be done when the mitosis operation is performed
(again with no cost). Most important of all, MST provides a
reliable compactness measure via “cell similarity” for any item
instead relying on only to a single (nucleus) item. By this way a
better judgment can be done whether or not a particular item is
suitable for a mature cell.

• HCT is mainly designed to work with PQ in order to
provide the earliest possible retrievals of the most relevant items.
Furthermore, HCT indexing body can be used for efficient
browsing and navigation among database items. The user is
guided at each level by nucleus items and several hierarchic levels
help the user to have a “mental picture” about the entire database.

Experimental results show that HCT achieves all the
abovementioned properties and capabilities in an automatic way
with no or loose parameter dependency. It further achieves
significant improvements in cell compactness and shows no sign
of corruption when the database size is getting larger. The
experiments performed over several multimedia databases suggest
that HCT usually yields a better clustering performance when the
discrimination power of the features is significant and henceforth
the cells can provide better item relevancy for the semantic point
of view.

Current and planned future studies include: the design of
alternative models for enhanced level compactness threshold
setting and a better cell compactness regularization function or a
template based model and the implementation of a generic
“relevance feedback” option during an HCT Browsing operation
so that the user can manually edit and update any cell structure.

REFERENCES
[1] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The

R*-tree: An efficient and robust access method for points and
rectangles”, In Proc. of ACM SIGMOD Int. Conf. on
Management of Data, Atlantic City, US, pp. 322-331. 1990.

[2] J. L. Bentley, “Multidimensional binary search trees used for
associative searching”, In Proc. of Communications of the ACM,
v.18 n.9, pp.509-517, September 1975.

[3] S. Berchtold, C. Bohm, H. V. Jagadish, H.-P. Kriegel, J. Sander,
‘Independent Quantization: An Index Compression Technique
for High-Dimensional Data Spaces’, In Proc. of the 16th Int.
Conf. on Data Engineering, San Diego, USA, pp.577-588, Feb.
2000.

[4] S. Berchtold , C. Böhm , H.-P. Kriegal, “The pyramid-technique:
towards breaking the curse of dimensionality”, In Proc. of the
1998 ACM SIGMOD International conference on Management
of data, pp.142-153, Seattle, Washington, US, June 01-04, 1998.

[5] S. Berchtold, D. A. Keim, and H.-P.Kriegel, “The X-tree: An
index structure for high-dimensional data”, In Proc. of the 22th
International Conference on Very Large Databases (VLDB)
Conference, 1996.

[6] T. Bozkaya, Z. M. Ozsoyoglu, “Distance-Based Indexing for
High-Dimensional Metric Spaces”, In Proc. of ACM-SIGMOD,
pp.357-368, 1997.

MM001177.R2 Hierarchical Cellular Tree: An Efficient Indexing Scheme for Content-based Retrieval on Multimedia Databases

17

[7] S. Brin, “Near Neighbor Search in Metric Spaces”, In Proc. of
International Conference on Very Large Databases (VLDB), pp.
574-584, 1995.

[8] K. Chakrabarti and S. Mehrotra. “The hybrid tree: An index
structure for high dimensional feature spaces”, In Proc. of Int.
Conf. on Data Engineering, pp. 440-447, February 1999.

[9] S.F. Chang, W. Chen, J. Meng, H. Sundaram and D. Zhong,
“VideoQ: An Automated Content Based Video Search System
Using Visual Cues”, In Proc. of ACM Multimedia, Seattle, US,
1997.

[10] P. Ciaccia, M. Patella, and P. Zezula, “M-tree: an efficient
access method for similarity search in metric spaces”, In Proc.
of International Conference on Very Large Databases (VLDB),
pp. 426-435, Athens, Greece, August 1997.

[11] M. J. Fonseca, J. A. Jorge, “Indexing High-Dimensional Data
for Content-Based Retrieval in Large Databases”, In Proc. of
Eighth International Conference on Database Systems for
Advanced Applications (DASFAA '03), pp. 267-274, Kyoto-
Japan, March 26 – 28, 2003.

[12] A. Guttman, “R-trees: a dynamic index structure for spatial
searching”, In Proc. of ACM SIGMOD, pp. 47-57, 1984.

[13] D. B. Johnson, P. T. Metaxas, “Optimal Algorithms for the
Single and Multiple Vertex Updating Problems of a Minimum
Spanning Tree”, Algorithmica 16(6): pp. 633-648, 1996.

[14] N. Katayama , S. Satoh, “The SR-tree: an index structure for
high-dimensional nearest neighbor queries”, In Proc. of the
1997 ACM SIGMOD international conference on Management
of data, pp.369-380, Tucson, Arizona, US, May 11-15, 1997.

[15] S. Kiranyaz, M. Gabbouj, “A Novel Multimedia Retrieval
Technique: Progressive Query (Why Wait?)”, IEE Proceedings
Vision, Image and Signal Processing, vol. 152, pp. 356-366,
May 2005.

[16] S. Kiranyaz, M. Gabbouj, “Hierarchical Cellular Tree: An
Efficient Indexing Method for Browsing and Navigation in
Multimedia Databases”, In Proc. of European Signal
Processing Conference, Eusipco 2005, Paper ID: 1063, Antalya,
Turkey, September, 2005.

[17] S. Kiranyaz, M. Gabbouj, “A Dynamic Content-based Indexing
Method for Multimedia Databases: Hierarchical Cellular Tree”,
In Proc. of IEEE Int. Conference on Image Processing, ICIP
2005, Paper ID: 2896, Genova, Italy, September, 2005.

[18] S. Kiranyaz, K. Caglar, O. Guldogan, and E. Karaoglu,
“MUVIS: A Multimedia Browsing, Indexing and Retrieval
Framework”, Proc. of Third International Workshop on Content
Based Multimedia Indexing, CBMI 2003, Rennes, France, 22-24
September 2003.

[19] S. Kiranyaz, K. Caglar, E. Guldogan, O. Guldogan, and M.
Gabbouj, “MUVIS: a content-based multimedia indexing and
retrieval framework”, Proc. of the Seventh Int. Symposium on
Signal Proc. and its Applications, ISSPA 2003, Paris, France,
pp. 1-8, 1-4 July 2003.

[20] P. Koikkalainen and E. Oja. ”Self-organizing hierarchical
feature maps”, In Proc. of the International Joint Conference on
Neural Networks, San Diego, CA, 1990.

[21] J. R. Kruskal, “On the shortest spanning subtree of a graph and
the traveling salesman problem”, Proc. of AMS, 71, 1956.

[22] J. T. Laaksonen, J. M. Koskela, S. P. Laakso, and E. Oja,
”PicSOM - content-based image retrieval with self-organizing
maps”, Pattern Recognition Letters, 21(13-14), pp. 1199-1207,
December 2000.

[23] W. Y. Ma, B. S. Manjunath, ”A Comparison of Wavelet
Transform Features for Texture Image Annotation”, Proc. IEEE
International Conf. On Image Processing, 1995.

[24] MUVIS. http://muvis.cs.tut.fi/

[25] K. Lin, H.V. Jagadish, and C. Faloutsos. “The TV-tree: an index
for high dimensional data”, Very Large Databases (VLDB)
Journal, 3(4), pp. 517-543, 1994.

[26] Open Video Project. http://www.open-video.org/
[27] M. Partio, B. Cramariuc, M. Gabbouj, A. Visa, “Rock Texture

Retrieval Using Gray Level Co-occurrence Matrix”, Proc. of 5th
Nordic Signal Processing Symposium, Oct. 2002.

[28] A. Pentland, R.W. Picard, S. Sclaroff, “Photobook: tools for
content based manipulation of image databases”, In Proc. of
SPIE (Storage and Retrieval for Image and Video Databases II),
2185, pp. 34-37, 1994.

[29] R. C. Prim, “Shortest Connection Matrix Network and Some
Generalizations”, Bell System Technical Journal, vol. 36, pp.
1389-1401, November, 1957.

[30] L. R. Rabiner and B. H. Juang, Fundamental of Speech
Recognition, Prentice hall, 1993.

[31] Y. Sakurai , M.Yoshikawa , S. Uemura , H. Kojima, “The A-
tree: An Index Structure for High-Dimensional Spaces Using
Relative Approximation”, In Proc. of the 26th International
Conference on Very Large Data Bases, pp. 516-526, September
10-14, 2000.

[32] T. K. Sellis , N. Roussopoulos , C. Faloutsos, “The R+-Tree: A
Dynamic Index for Multi-Dimensional Objects”, In Proc. of the
13th International Conference on Very Large Data Bases,
pp.507-518, September 01-04, 1987.

[33] I. K. Sethi, I. Coman, “Image retrieval using hierarchical self-
organizing feature map”, Pattern Recognition Letters, 20:1337–
1345, 1999.

[34] J.R. Smith and Chang, “VisualSEEk: a fully automated content-
based image query system”, In Proc. of ACM Multimedia,
Boston, November 1996.

[35] C. Traina Jr., A. J. M. Traina, B. Seeger, and C. Faloutsos,
“Slim-trees: High performance metric trees minimizing overlap
between nodes”, In Proc. of EDBT 2000, pp. 51-65, Konstanz,
Germany, March 2000.

[36] H. Wang, C.-S. Perng, “The S²-Tree: An Index Structure for
Subsequence Matching of Spatial Objects”, In Proc. of 5th
Pacific-Asic Conf. On Knowledge Discovery and Data Mining
(PAKDD), Hong Kong, 2001.

[37] R. Weber , H.-J. Schek , S. Blott, “A Quantitative Analysis and
Performance Study for Similarity-Search Methods in High-
Dimensional Spaces”, In Proc. of the 24rd International
Conference on Very Large Databases, pp.194-205, August 24-
27, 1998.

[38] D. White and R. Jain, “Similarity Indexing with the SS-tree”, In
Proc. of the 12th IEEE Int. Conf. On Data Engineering, pp. 516-
523, 1996.

[39] Virage. www.virage.com
[40] P. N. Yianilos, “Data structures and algorithms for nearest

neighbor search in general metric spaces”, In Proc. of the fourth
annual ACM-SIAM Symposium on Discrete algorithms, pp.311-
321, Austin, Texas, US, January 25-27, 1993.

[41] H. Zhang and D. Zhong, “A scheme for visual feature based
image indexing”, In Proc. of SPIE/IS&T Conf. On Storage and
Retrieval for Image and Video Databases III, vol. 2420, pp. 36-
46, (San Jose, CA), February 9-10, 1995.

[42] X. Zhou , G. Wang , J. X. Yu , G. Yu, “M+-tree: a new
dynamical multidimensional index for metric spaces”, In Proc.
of the Fourteenth Australasian database conference on
Database technologies 2003, pp.161-168, Adelaide, Australia,
February 2003.

