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Abstract— One of the challenges in the development of a 

content-based multimedia indexing and retrieval application is to 
achieve an efficient indexing scheme. The developers and users 
who are accustomed to making queries to retrieve a particular 
multimedia item from a large scale database can be frustrated by 
the long query times. Conventional indexing structures cannot 
usually cope with the requirements of a multimedia database, 
such as dynamic indexing or the presence of high-dimensional 
audiovisual features. Such structures do not scale well with the 
ever increasing size of multimedia databases whilst inducing 
corruption and resulting in an over-crowded indexing structure. 
This paper addresses such problems and presents a novel 
indexing technique, Hierarchical Cellular Tree, which is designed 
to bring an effective solution especially for indexing large 
multimedia databases. Furthermore it provides an enhanced 
browsing capability, which enables user to make a guided tour 
within the database. A pre-emptive cell search mechanism is 
introduced in order to prevent corruption, which may occur due 
to erroneous item insertions. Among the hierarchical levels that 
are built in a bottom-up fashion, similar items are collected into 
appropriate cellular structures at some level. Cells are subject to 
mitosis operations when the dissimilarity exceeds a required 
level. By mitosis operations, cells are kept focused and compact 
and yet, they can grow into any dimension as long as the 
compactness is maintained. The proposed indexing scheme is 
then used along with a recently introduced query method, the 
Progressive Query, in order to achieve the ultimate goal, from the 
user point of view that is retrieval of the most relevant items in 
the earliest possible time regardless of the database size. 
Experimental results show that the speed of retrievals is 
significantly improved and the indexing structure shows no sign 
of degradations when the database size is increased. 
Furthermore, HCT indexing body can conveniently be used for 
efficient browsing and navigation operations among the 
multimedia database items. 
 

Index Terms— content-based retrieval, metric access methods, 
multimedia databases, similarity-based indexing. 
 

I. INTRODUCTION 
T is a known fact that recent technological hardware and 
network improvements along with the daily usage of Internet 

have caused a rapid increase in the size of digital audio-visual 
information that is used, handled and stored via several 
applications. Besides several benefits and usages, such massive 
collection of information has brought storage and especially 
management problems. In order to overcome such problems 
several content-based indexing and retrieval techniques and 

 
 

applications have been developed such as MUVIS system [18], 
[19], [24], Photobook [28], VisualSEEk [34], Virage [39], and 
VideoQ [9], all of which are designed to bring a framework 
structure for handling and especially the retrieval of the digital 
multimedia items such as images, audio and/or video clips. In 
such frameworks, database primitives are mapped into some high 
dimensional feature domain, which may consist of several types 
of features such as visual, aural, etc. From latitude of low-level 
features, careful selection of the feature sets to be used for a 
particular application may capture the semantics of the database 
items in a content-based multimedia retrieval (CBMR) system.  In 
this way the similarity between two database items can be 
estimated by calculating the (dis-) similarity distance between 
their feature vectors. Such distances produce a ranking order of 
similar multimedia items within the database. This is the general 
query-by-example (QBE) scenario, which on the other hand is 
costly and CPU intensive especially for large multimedia 
databases. This fact brought a need for indexing techniques, 
which will organize the database in such a way that the query 
time and I/O operations could be reduced. The indexing 
techniques can be mainly grouped in two categories: Spatial and 
Metric Access Methods (SAMs and MAMs). However, both 
types have significant drawbacks for the indexing of large-scale 
multimedia databases. SAMs are, by nature, not suitable for this 
purpose due to strict assumptions and several well-known 
limitations they present. For instance the applicability of SAMs is 
limited by the fact that items have to be represented by the points 
in N dimensional feature space and the (dis-)similarity distance 
between two points has to be based on a distance function in pL  

metric such as Euclidean distance. Furthermore SAMs, while 
providing good results on low dimensional feature space do not 
scale up well to high dimensional spaces due to the phenomenon 
so called “the curse of dimensionality”. Recent studies [37] show 
that most of the SAM-based indexing schemes even become less 
efficient than sequential indexing for dimensions higher than 10. 
Especially large multimedia databases might contain many visual 
and aural features exceeding this limit multiple times. A more 
general approach can be obtained by MAMs, which basically 
comes from the fact that any MAM employs the indexing process 
by assuming only the availability of a similarity distance function 
that is a norm. Therefore, in a multimedia database with several 
multi-dimensional features, as long as a similarity distance 
function that is usually treated as a “black box” by the underlying 
MAM, exists the database can be indexed by any MAM. Yet the 
existing MAMs present several drawbacks for similarity-based 
indexing of multimedia databases. The static MAMs, for instance, 
do not support dynamic changes (new insertions or deletions); 
whereas this is an essential requirement during the incremental 
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construction of a multimedia database. Even though M-tree [10] 
and its variants provide dynamic database access, the incremental 
construction of the indexing tree could lead, depending on the 
order of the objects or the choice of its pre-fixed parameters, to 
significantly varying performances during the indexing and 
querying phases. 

In order to overcome such problems and provide efficient 
solutions to the aforementioned shortcomings of the indexing 
algorithms for the multimedia databases, we develop a MAM-
based, dynamic and self-organized indexing scheme, the 
Hierarchical Cellular Tree (HCT). As its name implies, HCT has 
a hierarchic structure, which is formed into one or more levels. 
Each level is capable of holding one or more cells. A cell 
corresponds to a node in an M-tree. The reason for the different 
name is because each cell further contains a tree structure, a 
Minimum Spanning Tree (MST), which refers to the database 
objects (their database representations and basically their 
descriptors) as its MST nodes.  Among all indexing structures 
available, M-tree shows the highest structural similarity to HCT, 
such as:  

• Both indexing schemes are MAM-based and have a 
similar hierarchical structure, i.e. levels. 

• They are both created dynamically, in a bottom-up 
fashion. The tree grows one level upwards whenever a split 
occurs in the top level cell. 

• Except the top level cell, each cell is represented by a 
nucleus (routing) object in the higher level. 

However, there are several major differences in their design 
philosophies and objectives: 

• M-tree is designed to achieve a balanced tree with a low 
I/O cost in large data set. HCT is on the other hand designed for 
indexing multimedia databases where the content variation is 
seldom balanced and it is therefore, an unbalanced tree 
optimized for achieving highly focused cells, which may exhibit 
significant variations on size and density.  

• M-tree depends on a maximum (fixed size) capacity M. 
Therefore, its performance depends on a “good” choice of this 
parameter with respect to the database size and thus, M-tree 
construction significantly varies with it. However, for 
multimedia databases the database size is dynamic and its 
content may vary significantly. HCT, on the other hand, has no 
limit for the cell size as long as the cell keeps a definite 
“compactness” measure.  

• In M-tree the cell compactness is only measured with 
respect to distance of the routing (nucleus) object to the farthest 
object that is so called the covering radius. Due to the 
aforementioned reasons of unreliability on such single measure 
for the cell compactness, HCT uses all cell items and their 
minimum distances to the cell (instead of a single nucleus item 
alone) to define a regularization function that represents a 
dynamic model for the cell compactness. During the lifetime of 
the HCT body (i.e. item insertions, removals, fitness checks, 
post-reactions, etc.) this function dynamically updates the 
current cell compactness feature, which is then compared to a 
certain statistically driven level threshold value to decide 
whether or not the cell should be split (mitosis).  

• The split policies and objectives are also different 
between M-tree and HCT.  

• The insertion processes differ significantly in terms of 
cell search operations. M-tree insertion operation is based on 
“Most-Similar Nucleus” (MS-Nucleus in this article) cell 
search, which depends on a simple heuristics which assumes 
that the closest nucleus item (aka “routing object”) yields the 
best sub-tree during the descend and finally the best (target) cell 
to be appended. In this paper, we will show that this is not 
always a valid assumption and it is a potential cause for 
corruption since it may lead to sub-optimum insertions 
especially for large databases due to the “crowd effect”. HCT is 
designed to perform an optimum search for the target cell to 
which the incoming item should belong. This search, so called 
Pre-emptive cell search, during descend at each level verifies all 
possible paths that are likely to yield a better nucleus item (and 
hence a better cell at a lower level) in an iterative way. By this 
way, along with the mitosis operation this search algorithm 
further improves the cell compactness factor at each level.  

• M-tree has a conservative structure that might cause 
degradations in due time. For example, the cell nucleus (routing 
object) is not changed after an insertion or removal operation 
even though another item might now be a more suitable 
candidate for being the cell nucleus. On the contrary, HCT has a 
totally dynamic approach. Any operation (insertion, removal or 
mitosis) can change the current cell nucleus to a new (better) 
one. 
The rest of this paper is organized as follows: Section 2 

presents the related work in the area of indexing and retrieval. In 
Section 3 we introduce the generic HCT design philosophy and 
implementation details. Section 4 is devoted to QBE operations 
over HCT indexing structure. A novel browsing scheme, HCT 
Browsing, is discussed in Section 5. Section 6 presents the 
experimental results. Finally, Section 7 concludes the paper and 
discusses some future research topics.  

II. RELATED WORK 
For the past three decades, researchers proposed several indexing 
techniques that are formed mostly in a hierarchical tree structure 
that is used to cluster (or partition) the feature space. Initial 
attempts such as KD-Trees [2] used space-partitioning methods 
that divide the feature space into predefined hyperplanes 
regardless of the distribution of the feature vectors. Such regions 
are mutually disjoint and their union covers the entire space. In R-
tree [12] the feature space is divided according to the distribution 
of the database items and region overlapping may occur as a 
result. Both KD-tree and R-tree are the first examples of Spatial 
Access Methods (SAMs). Afterwards several enhanced SAMs 
have been proposed. R*-tree [1] provides a consistently better 
performance by introducing a policy called “forced reinsert” than 
the R-tree and R+-tree [32].  R*-tree also improves the node 
splitting policy of the R-tree by taking overlapping area and 
region parameters into consideration. Lin et al. proposed TV-tree 
[25], which uses so-called telescope vectors. These vectors can be 
dynamically shortened assuming that only dimensions with high 
variance are important for the query process and therefore low 
variance dimensions can be neglected. Berchtold et al. [5] 
introduced X-tree, which is particularly designed for indexing 
higher dimensional data. X-tree avoids overlapping of region 
bounding boxes in the directory structure by using a new 
organization of the directory and as a result, X-tree outperforms 
both TV-tree and R*-tree significantly. It is 450 times faster than 
R-tree and between 4 to 12 times faster than the TV-tree when the 
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dimension is higher than two and it also provides faster insertion 
times. Still bounding rectangles can overlap in higher dimensions. 
In order to prevent this, White and Jain proposed the SS-tree [38], 
an alternative to R-tree structure, which uses minimum bounding 
spheres instead of rectangles. Even though SS-tree outperforms 
R*-tree, the overlapping in the high dimensions still occurs. 
Thereafter, several other SAM variants are proposed such as SR-
tree [14], S²-Tree [36], Hybrid-Tree [8], A-tree [31], IQ-tree [3], 
Pyramid Tree [4], NB-tree [11], etc. The aforementioned 
degradations and shortcomings prevent a wide spread usage of 
SAM based indexing structures especially on multimedia 
collections. In order to provide a more general approach to 
similarity indexing for multimedia databases, several MAM-based 
indexing techniques have been proposed.  Yianilos [40] presented 
vp-tree that is based on partitioning the feature vectors (data 
points) into two groups according to their similarity distances 
with respect to a reference point, so called vantage point. Bozkaya 
and Ozsoyoglu [6] proposed an extension of vp-tree, so-called 
mvp-tree (multiple vantage point), which basically assigns m 

vantage points to a node with a fan out of 2m .  They reported 
20% to 80% reduction of similarity distance computation 
compared to vp-trees. Brin [7] introduced Geometric Near-
Neighbor Access Tree (GNAT) indexing structure, which chooses 
k number of split points at the top level and each of the remaining 
feature vectors are associated with the closest split points. GNAT 
is then built recursively and the parameter k is chosen to be a 
different value for each feature set depending on its cardinality. 
Koikkalainen and Oja introduced TS-SOM [20] that is used in 
PicSOM [22] as a CBIR indexing structure. TS-SOM provides a 
tree-structured vector quantization algorithm. Other similar SOM-
based approaches are introduced by Zhang and Zhong [41], and 
Sethi and Coman [33]. All SOM-based indexing methods rely on 
training of the levels using the feature vectors and each level has a 
pre-fixed node size that has to be arranged according to the size of 
the database. This brings a significant limitation, that is, they are 
all static indexing structures, which do not allow dynamic 
construction or updates for a particular database.  Retraining and 
costly reorganizations are required each time the content of the 
image database changes (i.e. new insertions or deletions), that is 
indeed nothing but rebuilding the whole indexing structure from 
scratch. Similarly the rest of the MAMs so far addressed present 
several shortcomings. Contrary to SAMs, these metric trees are 
designed only to reduce the number of similarity distance 
computations, paying no attention to I/O costs (disk page 
accesses). They are also intrinsically static methods in the sense 
that the tree structure is built once and new insertions are not 
supported. Furthermore, all of them build the indexing structure 
from top to bottom and hence the resulting tree is not guaranteed 
to be balanced. Ciaccia et al. [10] proposed M-tree to overcome 
such problems. M-tree is a balanced and dynamic tree, which is 
built from bottom to top, creating a new root level only when 
necessary. The node size is a fixed number, M, and therefore, the 
tree height depends on M and the database size. Its performance 
optimization concerns both CPU computational time for similarity 
distances and I/O costs for disk page accesses for feature vectors 
of the database items. Recently, Traina et al. [35] proposed Slim-
tree, an enhanced variant of M-trees, which is designed for 
improving the performance by minimizing overlaps between 
nodes. They introduced two parameters, “fat-factor” and “bloat-
factor”, to measure the degree of overlap and proposed the usage 
of Minimum Spanning Tree (MST) [21], [29], for splitting the 

node. Another slightly enhanced M-tree structure, so-called M+-
tree, can be found in [42]. 

Along with the indexing techniques addressed so far, certain 
query techniques have to be used to speed up a query process 
within indexed databases. The most common query techniques are 
as follows: 

• Range Query: Given a query object, Q, a maximum 
similarity distance range, ε, and a non-negative similarity distance 
function SD, the range query selects all indexed database items, 

iQ , such that SD (Q, iQ ) < ε. 

• kNN Query: Given a query object, Q, and an integer 
number k > 0, kNN query selects the k database items, which 
have the shortest similarity distance from Q.  

Both query techniques may not provide efficient retrieval 
scheme from the user point of view due to their parameter 
dependency. For instance, range queries require a distance 
parameter, ε, where the user may not be able to provide such a 
number prior to a query process since it is not obvious how to 
find out a suitable range value if the database contains various 
types of features and feature subsets. Similarly, for a kNN query 
the parameter k might be hard to determine since if chosen too 
small the database may provide a large number of similar 
(relevant) items than required, and if too big, unnecessary CPU 
time might have been wasted for that query process if only a 
much smaller number was in fact needed. In general, both query 
techniques require several trials to converge to a successful 
retrieval result and this might remove the speed benefit of the 
underlying indexing scheme, if there is any. 

In order to eliminate such drawbacks and provide a faster query 
scheme, recently a novel retrieval scheme, the Progressive Query 
(PQ), has been proposed [15]. PQ is a retrieval (via query) 
technique, which can be performed over the databases with or 
without the presence of an indexing structure. When the database 
has an indexing structure, PQ can replace kNN and range queries 
whenever a Query Path (QP) over which PQ proceeds, can be 
formed. Instead of relying on some unknown parameters such as k 
or ε, PQ provides periodic query results along with the query 
process and allows the user to stop the query in case the results 
obtained so far are satisfactory. Therefore, the proposed (HCT) 
indexing technique has been designed to work in harmony with 
PQ in order to evaluate the retrieval performance in the end, i.e. 
how fast the most relevant items can be retrieved or how efficient 
HCT can provide a QP for a particular query item. 

III. HCT OVERVIEW 
HCT is a dynamic, cell–based and hierarchically structured 
indexing method, which is purposefully designed for PQ 
operations and advanced browsing capabilities within large 
multimedia databases.  It is mainly a hierarchical clustering 
method where items are partitioned depending on their relative 
distances and stored within cells on the basis of their similarity 
proximity. The similarity distance function implementation is a 
black-box for the HCT. Furthermore, HCT is a self-organized tree, 
which is implemented via genetic programming principles. This 
basically means that the operations are not externally controlled; 
instead each operation such as item insertion, removal, mitosis, 
etc. are carried out according to some internal rules within a 
certain level and their outcomes may uncontrollably initiate some 
other operations on other levels. Yet all such “reactions” 
terminate in a limited time, that is, for any action (i.e. an item 
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insertion), its consequent reactions will not last indefinitely due to 
the fact that each of them can occur only in a higher level and any 
HCT body has naturally a finite number of levels. In the 
following sub-sections, we will detail the basic structural 
components of the HCT body and then explain the indexing 
operations in an algorithmic way. 

A. Cell Structure 
A cell is the basic container structure, in which similar database 
items are stored. The ground level cells contain the entire 
database items. Each cell further carries a MST whose nodes span 
all items in the cell. This internal MST is used to keep the 
minimum (dis-) similarity distance of each individual item to the 
rest of the items in the cell. So this scheme resembles MVP-tree 
[6] structure; however instead of using some (pre-fixed) number 
of items, all cell items are now used as vantage points for any 
(other) cell item. These item-cell distance statistics are mainly 
used to calculate the cell compactness. In this way we can have a 
better idea about the similarity proximity of any item instead of 
comparing it only with a single item (i.e. the cell nucleus) and 
hence a better compactness feature. The compactness algorithm is 
a black-box implementation. Here, we use a regularization 
function obtained from the statistical analysis using the MST and 
some cell data. This dynamic feature can then be used to decide 
whether or not to perform mitosis within the cell at any instant. If 
mitosis is granted, MST is again used to decide where the split 
should occur and the longest branch of the MST is the natural 
choice for this. Furthermore, MST is used to update cell nuclei to 
the most suitable item after any operation is completed within the 
cell. 

In HCT, the cell size is kept entirely flexible and varies with no 
upper bound. However, similar to organic cells, HCT cells are not 
allowed to undergo mitosis before reaching a certain level of 
maturity. Otherwise one cannot obtain reliable information 
whether or not the cell is ready for mitosis since there is simply 
not enough statistical data that are gathered from the cell items 
and its MST. Therefore, a maturity cell size (e.g. 5≥MN ) is set 
for all cells in HCT body (level independent) except the top level. 
Since the top level is the unique level hosting a single cell, the 
latter may be allowed to have a moderate maturity cell size (i.e. 

10≥T
MN ), possibly set as a user preference since the top level 

(cell) can be thought as a “Table of Contents” of the database 
whilst giving a summary of the overall HCT body.  On the other 
hand, the maturity cell size should not be confused with 
parameter M for M-tree where M is used to enforce mitosis for a 
cell with size M irrespective of the cell condition (i.e. 
compactness) is. In HCT, we set minimum size as a pre-requisite 
condition for a cell to undergo mitosis. This is not a significant 
parameter, which neither affects the overall performance of HCT 
nor needs to be proportional to the database size or any other 
parameter, as is the case for M-tree. 

1) MST Formation: Let },{ BNG = be a connected and 

weighted graph, where nN = nodes (vertices) and 

bB = branches (edges). Let iw represents the ith branch weight. 

A spanning tree of G is a subgraph },{ SBNS =  where 

BBS ⊆ . The overall weight of S can be defined as the 

cumulative weight of its branches, i.e. ∑=
SB iS wW . MST of 

G can then be defined as the (unique) spanning tree with 
minimum cumulative (total) weight. There are several MST 
construction algorithms, such as Kruskal’s [21] and Prim’s [29]. 
Those algorithms are, however, static algorithms, that is, all MST 
branches with their weights should be known beforehand. Since 
MST nodes represent database items, this requires a priori 
calculation of the relative similarity distances and hence yields a 

)( 2nO  computational cost. In HCT cells and their MST should 
be constructed dynamically (incrementally) since items can be 
inserted any time and it would be infeasible to re-construct MST 
from scratch each time a new item is inserted since such an 
operation would require )( 3nO computations. Therefore, an 
incremental MST construction algorithm is adopted based on leaf 
node (vertex) pruning and branch (edge) contraction [13]. This is 
a sequential algorithm and has )(nO computational complexity 

per (incoming) item and hence )( 2nO overall cost as desired. 
2) Cell Nucleus: Cell nucleus is the item, which represents the 

owner cell on the higher level(s). Since during the top-down cell 
search for an item insertion, these nucleus items are used to 
decide the cell into which the item should be inserted, it is 
therefore essential to promote the best item for this representation 
on any instant. When there is only one item in the cell, it is 
obviously the nucleus item of that cell. Otherwise the nucleus 
item is assigned by using the cell MST as the item having the 
maximum number of branches (connections to other items). This 
heuristics makes sense since it is the unique item to which most of 
the items have the closest proximity to it (according to the MST 
optimality on the minimal branch weights). Contrary to static 
nucleus assignment of the some other MAM-based indexing 
schemes such as M-tree, the cell nucleus is dynamically verified 
and if necessary updated for any HCT cell whenever an operation 
is performed over the cell in order to maintain the best 
representation of the (dynamically changing) cell and there is no 
computational cost for this so far since it can be extracted directly 
from the “ready” MST (branch) data. 

3) Cell Compactness: Cell compactness quantifies how tight 
(focused) the clustering for the items within the cell. Furthermore, 
the regularization function implementation for the calculation of 
the cell compactness value is in general a black box for HCT. In 
this sub-section we will present the statistical parameters of this 
function used in the experiments.  

Due to “semantic gap” the discrimination power of the low-
level visual or aural features can be quite limited. Consequently, 
high variations might occur among the similarity distances 
calculated between a single item (i.e. a vantage point) and a group 
of “similar” items and this naturally creates a major problem if the 
compactness measure would be based on a single nucleus item.  
This is the main reason why instead of using a single (nucleus) 
item to find out the similarity of a new (incoming) item, multiple 
vantage points, i.e. all cell items for a HCT cell, are used. Once a 
cell reaches maturity (a pre-requisite for evaluating cell 
compactness) reliable first order statistics can thus be obtained 
from the branch weights of cell MST. Using also the covering 
radius, a regularization function, f, providing a model for the 
compactness feature of the cell, CCF , can then be formed as 
follows: 
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0)),max(,,,( ≥= CCCCCC NwrfCF σμ  (1) 

where Cμ  and Cσ  are the mean and standard deviation of the 

MST branch weights, Cw , of cell C. Cr is the covering radius, 
that is the distance from the nucleus to the farthest item in the cell 
and MC NN >  is the number of items in the cell C. The 
regularization function can then be formed in such a way that 
higher values of  all the statistical parameters are to be penalized 
since a better compactness can be achieved via minimizing all 
whilst CN  increases gradually with the item insertions. In the 

limit, the highest compactness is achieved when 0=CCF  which 
means that all cell items are identical. 

Similar to continuous updates for the nucleus item, the CCF  
value is also updated (recalculated) each time an operation is 
performed over the cell C. The new (updated) CCF  is then 

compared with the current level compactness threshold, LCThr , 
that is dynamically calculated within each level and if the cell is 
mature but not compact enough, i.e. LC CThrCF > , mitosis is 
therefore, granted for that cell. 

4) Cell Mitosis: As explained earlier there are two conditions 
necessary for a mitosis operation: maturity (i.e. MC NN > ) and 

cell compactness (i.e. LC CThrCF > ). Both conditions are 
checked after an operation (e.g. item insertion or removal) occurs 
within the cell in order to signal a mitosis operation.  Due to the 
presence of MST within each cell, mitosis has no computational 
cost in terms of similarity distance calculations. The cell is simply 
split by breaking the longest branch in MST and each of the 
newborn child cells is formed using each of the MST partitions. A 
sample mitosis operation is illustrated in Figure 1. 
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Figure 1: A Sample Mitosis operation over a mature cell C. 

B. Level Structure 
HCT body is hierarchically partitioned in one or more levels, as 

one sample example shown in Figure 5. In this example there are 
three levels that are used to index 18 items. Apart from the top 
level, each level contains various number of cells that are created 
by mitosis operations, which have occurred on that level. The top 
level contains a single cell and when this cell splits, a new top 
level is created above this level. As mentioned earlier, the nucleus 
item of each cell on a particular level is represented on the higher 
level. 

Each level logs the operations performed on it, such as the 
number of mitosis operations and the compactness of the cells. 
Note that each level tries to dynamically maximize the 
compactness of their cells. This however is not a straightforward 

process since incoming items may not exhibit a close similarity to 
the items present in the cells, and therefore, such dissimilar item 
insertions will cause a temporary degradation of the overall 
(average) compactness of the level. So each level, while 
analyzing the effects of the (recent) incoming items on the overall 
level compactness, should employ necessary management steps to 
provide a trend of improving compactness in due time (i.e. with 
future insertions). Within a period of time (i.e. during a number of 
insertions or after some number of mitosis operations), each level 
updates its compactness threshold according to the compactness 
of mature cells, into which items were inserted. In our earlier 
work [17], where an initial HCT indexing scheme is first 
designed, we used a simple, average-based setting for LCThr , 
such as: 

PCF

SC

NNC
CL SCkCF

P
kCThr

C

P

MC

∈∀== ∑
∈

>

μ0
0  (2) 

where PS  is the set of mature cells on level L, upon which P 

insertions have recently been performed and 00 ≥k  is the 
inverse of compactness trend factor, which determines how much 
enhancement will be targeted for the next P insertions beginning 
from the moment of the latest LCThr  setting. Although this 
function gives fairly good results for most of the cases, it is 
significantly effected by the extreme cases where CCF  is too 
high or too low for some cells during P insertions. Therefore, it 
might show a noisy behavior due to random item insertions and 
the danger of over- or under-splitting cells emerges. A robust and 
more convergent LCThr function can be expressed in Eq. (3) 

)(1

0
MCL SCCFMedian

k
CThr ∈∀=  (3) 

where MS  is the set of mature cells present in the current HCT 

body and 00 >k  is the compactness trend factor, which 
determines how much flexibility can be allowed for incoming 
insertions starting from the moment of the latest LCThr  setting. 

If 10 =k , the trend is built upon keeping the current level of 
compactness intact and so no enhancement will be targeted for 
future insertions. On the other hand, when ∞→0k  then the cells 
will split each time they reach maturity and in this case HCT split 
policy will be identical to M-tree. The Median operator keeps the 
extreme cases out from the LCThr  calculation for future 
insertions and hence continuously tracks a median cell maturity 
level. Its convergence behavior can be seen in Figure 8 (top) for a 
sample incremental HCT formation experiment. 

C. HCT Operations 
There are mainly three HCT operations: cell mitosis, item 
insertion and removal. Cell mitosis can only happen as a post 
processing after any of the other two HCT operations occurs. 
Both item insertion and removal are generic HCT operations that 
are identical for any level. Item insertion is performed as one item 
into one level at a time; whereas, item removal is a cell-based 
operation meaning that items belonging to the same cell can be 
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removed in a single step.  In the following sub-sections, we will 
present the algorithmic details of both operations. 
1) Item Insertion Algorithm for HCT: Let nextItem be the item to 
be inserted into a target level indicated by a number, levelNo. 
Accordingly, the Insert algorithm can be expressed as follows: 

 
The insertion algorithm, Insert (nextItem, levelNo), first 

performs a novel search algorithm, the Pre-emptive cell search, 
which recursively descends HCT from top to the target level in 
order to locate the most suitable cell for nextItem. Once the target 
cell is located, the item is inserted into the cell and then the cell 
becomes subject to a generic post-processing check. First the cell 
is examined for a mitosis operation and as explained earlier if the 
cell is mature and yields a worse compactness than required (i.e. 

LC CThrCF > ), then mitosis is applied to produce two new 
(child) cells on the same level. The parent cell is thus removed 
from the cell queue of the level and two child cells are inserted 
instead. Accordingly, the old nucleus item is removed from the 
upper level and two new nucleus items are inserted into the upper 
level by consecutively calling Insert (nextItem, levelNo+1) 
function for both of the (nucleus) items. This is a particular 
genetic algorithm example where an independent process 
deterministically calls another process in an iterative way. Note 
that these processes are independent from each other but the 
outcome of one may initiate the other. In case mitosis is not 
performed (for instance the cell is still compact enough after 
insertion) another post processing step is performed to verify the 
need for the cell nucleus change. In such a case, first the old 
nucleus is removed from the upper level and the new one is 
inserted. Item insertion is a level-based operation and is 
implemented per item at a time.  

PreemptiveCellSearch implements the Pre-emptive cell 
search algorithm for finding the target (owner) cell on the level 
where insertion should occur. The traditional cell search 
technique, MS-Nucleus used in M-Tree and its derivatives, 
depends on a simple heuristics, which assumes that the closest 
nucleus (routing) object yields the best sub-tree during descend 
and finally the best (owner) cell to be appended. Let d( ) be the 
similarity distance function, O the object to be inserted, i

NO  and 

)( i
NOr  the nucleus object and its covering radius for the ith 

cell, iC , respectively. Particularly in M-tree, the rationale used is 
divided into two distinct cases: 
Case 1. If no nucleus item for which 

i
i
N

i
N COrOOd ∀≤ )(),(  exists, goal becomes to minimize 

the increase of the covering radius, i.e. 

i
i
N

i
Ni COrOOd ∀−=Δ )(),( , among all the nucleus objects 

that are in the owner cell C.  
Case 2. If there exists a nucleus item for which 

i
i
N

i
N COrOOd ∀≤ )(),( , then its sub-tree is tracked on the 

lower level. If multiple sub-trees (nucleus objects) with this 
property exist, then the one to which the object O is the closest, is 
chosen.  

Both cases fail to track the closest (most similar) objects on the 
lower level as the sample illustration shows in Figure 2. In this 
figure, 1

NO  and 2
NO  are the nucleus (routing) objects 

representing the lower level cells 1C  and 2C  on the upper level. 
In both cases, the MS-Nucleus technique tracks down the sub-tree 
of 2

NO , that is, the cell 2C  as a result of the cases expressed 
above. However, on the lower level the closest (most similar) 
object is item c (since 21 dd < ), which is a member of 1C . 

o

1d 2d

o

1d 2d

Case 2:

1
NO1

NO 2
NO 2

NO
)( 1

NOr )( 1
NOr)( 2

NOr
)( 2

NOr

1Δ 2Δ

212 CO ⎯→⎯⇒Δ<Δ 2
2

2 )( COOrd N ⎯→⎯⇒<

1C 2C
1C

2C
Case 1:

a

f

c d

b
e

a

e

dc

b

f

 

Figure 2: M-Tree rationale used to determine the most 
suitable nucleus (routing) object for two possible cases. Note 
that in both cases the rationale fails to track on the closest 
nucleus object on the lower level.  

Pre-emptive cell search algorithm in HCT performs a pre-
emptive analysis on the upper level to find out all possible 
nucleus objects, which might yield the closest (most similar) 
objects on the lower level. Note that on the upper level we have 
no information about the items in cells 1C  and 2C , yet we can 
set appropriate pre-emptive criteria to fetch all possible nucleus 
items whose cells should be analyzed to track on the closest item 
(item c in this particular example) in the lower level.  Let mind be 
the distance to the closest nucleus item (in the upper level). Then 
pre-emptive cell search rationale can be expressed as follows:  
Case 1. If no nucleus item for which 

i
i
N

i
N COrOOd ∀≤ )(),(  exists, then fetch all nucleus items 

Insert (nextItem, levelNo) 
 Let top level number: topLevelNo and the single cell in top 

level: cell-T  
 If(levelNo > topLevelNo) then do: 

o Create a new top level: level-T  with number = 
topLevelNo+1 

o Create a new cell in level-T: cell-T 
o Append nextItem into cell-T. 
o Return. 

 Let the Owner (target) cell in level levelNo: cell-O  
 If(levelNo = topLevelNo ) then do: 

o Assign cell-O = cell-T 
 Else do: 

o Create a cell array for Pre-emptive cell search: 
ArrayCS[], put cell-T  into it 

o Assign cell-O = PreEmptiveCellSearch (ArrayCS[],  
nextItem,  topLevelNo) 

 Append nextItem into cell-O. 
 Check cell-O for Post-Processing: 

o If cell-O is split then do: 
 Let item-O, item-N1 and item N2 be old nucleus 

item (parent) and new nucleus items. 
 Remove( item-O, levelNo+1) 
 Insert(item-N1, levelNo+1) 
 Insert(item-N2, levelNo+1) 

o Else if nucleus item is changed within cell-O then do: 
 Let item-O and item-N be old and new nucleus 

items. 
 Remove( item-O, levelNo+1 ) 
 Insert( item-N, levelNo+1 ) 

 Return.  
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whose cells on the lower level may provide the closest object, i.e. 

i
i
N

i
Ni CdOrOOd ∀≤−=Δ min)(),( , among all the 

nucleus objects that are in the owner cell C.  
Case 2. If there exists one or more nucleus item(s) for which 

i
i
N

i
N COrOOd ∀≤ )(),( , then fetch all of them since their 

owner cells on the lower level may provide the closest object.  
Since Case 1 implies Case 2, Case 1 can be used as the one and 

only criterion to fetch all nucleus items for tracking. At each level 
descending towards the target level, using such a pre-emptive 
analysis that fetches all nucleus items whose owner cells may 
provide the “most similar” nucleus item for the lower level and so 
on, Pre-emptive cell search terminates its recursion one level 
above the target level and presents the (final) most similar nucleus 
item with its owner cell on the target level into which the nextItem 
should be inserted. This achieves an optimum insertion scheme in 
the sense that the owner cell found on the target level presents the 
closest nucleus item with respect to the item to be inserted (i.e. 
nextItem). As a natural consequence of this, Pre-emptive cell 
search based item insertion algorithm increases the likelihood of 
achieving a better cell compactness along with the mitosis 
operations. Accordingly the Pre-emptive cell search algorithm, 
PreemptiveCellSearch, can be expressed as follows: 

  Experimental results show that Pre-emptive cell search is 
effective especially on the upper levels to find out the correct 
track, which yields the best target cell; however, the 
computational cost increases significantly especially on the lower 
levels. In order to find a trade-off, a hybrid cell search algorithm 
can be used especially for very large databases. From the top level 
till a certain depth (say PECS_DEPTH), Pre-emptive cell search 
is applied to guarantee to follow the right track and from this level 
downwards MS-Nucleus is applied. In this way the overall 
computational cost can be significantly reduced whilst causing 
only a minimal corruption. Note also that although hybrid mode is 
enabled during the incremental construction of any database, 
when the database height is below PECS_DEPTH+1, only Pre-
emptive cell search will be used, and afterwards the hybrid cell 
search mechanism is used.  

2) Item Removal Algorithm for HCT: This is another level-
based operation, which does not require any cell search operation. 

However upon its completion it may cause several post-
processing operations, affecting the overall HCT body. As 
explained earlier, if multiple items need to be removed at a 
particular (target) level, then they are removed one subgroup at a 
time where items in a subgroup belong to the same cell. 
Therefore, without loss of generality we will introduce the 
algorithmic steps assuming that all items to be removed belong to 
a single cell. Let ArrayIR[] be the array for the items (which 
belong to an owner cell, say cell-O) to be removed from (target) 
level, levelNo. The Remove algorithm can then be expressed as 
follows: 

D. HCT Indexing 
HCT can index a multimedia database using any set of 

available features, as long as a fusion mechanism and a similarity 
measure are provided. There are mainly two distinct operations 
for HCT indexing. The incremental construction of the HCT body 
and an optional periodic fitness check operation over it. In the 
following sub-sections, we will present the algorithmic details of 
both operations. 
1) HCT Incremental Construction: Let G represent the indexing 
genre (visual and/or aural) for a multimedia database, D. Let 
ArrayI<G> be the item array containing items that are to be 
appended to D. Initially, D may or may not have a HCT indexing 
body. If not then all the (valid) items within D will be inserted 
into ArrayI<G> and a new HCT body is constructed; otherwise, 
the available HCT body is first loaded and updated for the 
newcomers present in >< GArrayI . Accordingly, the HCT 
indexing body construction algorithm, HCTIndexing, can be 
expressed as follows: 

PreemptiveCellSearch (ArrayCS[],  nextItem,  curLevelNo) 
 By searching ArrayCSCCOO ii

i
N

i
N ∈∀∧∈∀  Find 

the most similar item, item-MS and mind . 
 If(curLevelNo = levelNo + 1) then do: 

o Let the owner cell of item-MS: cell-MS in the (target) 
level (with level number: levelNo) 

o Return cell-MS 
 Create a new array for cell search: NewArrayCS[] = ∅  
 For ArrayCSCCOO ii

i
N

i
N ∈∀∧∈∀ , do: 

o If( min)(),( dOrOOd i
N

i
Ni ≤−=Δ ) then do: 

 Find the owner cell of (nucleus) item i
NO  in the 

lower level: i
NCcell −   

 Append i
NCcell −  into NewArrayCS[] 

 End loop. 
 Return PreemptiveCellSearch (NewArrayCS[],  nextItem,  

curLevelNo-1) 

Remove (ArrayIR[], levelNo) 
 Let top level number: topLevelNo and the single cell in top level: 

cell-T  
 Let the Owner (target) cell in level levelNo: cell-O  
 Remove items in ArrayIR from cell-O 
 Check cell-O for Post-Processing: 

o If cell-O is depleted (cell-death) then do: 
 If( levelNo = topLevelNo ) then do: 

• Remove cell-O=cell-T  
• Remove the top level from HCT body 

 Else do: 
• Let item-O be the old nucleus item 
• Remove (item-O, levelNo+1) 

o Else if cell-O is split then do: 
 Let item-O, item-N1 and item N2 are old nucleus item 

and two new nucleus items. 
 Remove (item-O, levelNo+1) 
 Insert (item-N1, levelNo+1) 
 Insert (item-N2, levelNo+1) 

o Else if nucleus item is changed within cell-O then do: 
 Let item-O and item-N be old and new nucleus items. 
 Remove (item-O, levelNo+1) 
 Insert (item-N, levelNo+1) 

Return.

HCTIndexing ( >< GArrayI , G, D) 
 Load and activate HCT indexing body in genre G for database 

D.  
 For ><∈∀∀ GArrayIOO i

G
i
G , do:  // For all items 

in the array, perform incremental insertion. 
o Insert ( i

GO , 0)  // Insert ith  item into HCT body. 
 End loop. 
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2) HCT Fitness Check: The fitness check is an optional operation 
that can be performed periodically during or after the indexing 
operation.  It aims to minimize the corruption, which might have 
occurred due to the only uncontrollable factor during the 
formation of the HCT body that is the order of item insertions. In 
general multimedia database items are inserted in any order, 
which might yield an ever-growing corruption if not handled 
appropriately. Fitness check is implemented with two distinct 
operations, namely Outliers Check and Cell Merging, which are 
presented next. 

I. Outliers Check 
The objective of this operation is to reduce the “crowd effect” by 
removing redundant minority cells (i.e. cells with only one or a 
few items in it) from the HCT body. Due to the insertion order of 
items, one or some minor group of items may form a cell at the 
initial stages of the HCT construction operation. Later on, some 
other major cells may become more suitable for hosting those 
items, which have already been trapped in the minor cells. Note 
that such minority cells create an over-crowded scheme on their 
level as well as on the upper levels since each one of them has a 
representative (nucleus) item hosted by a cell on the upper level.  
So the idea is to get rid of such cells and feed their items back to 
the system, expecting that some other mature cells might now 
host them. Note that after they are inserted to the most suitable 
cell on the level, the host cell may still refuse them if their 
insertion results in a significant degradation on the cell 
compactness and hence causing the cell to split. In such a case, 
the original part of the host cell and the new item will be assigned 
to one of two newborn cells. This is the case where they are in 
fact the outliers that no other (similar) cell exists yet to host them 
and thus they only have the privilege to stay in a minority cell; 
whereas the others are successfully hosted by mature cells.  

Once completed the primary expectation from this operation is 
a percentage increase for the mature cells along with their item 
coverage on a particular level without causing significant 
degradations in the overall compactness. This operation is 
performed for all levels in decreasing order (top to bottom) except 
the top level. The reason for such ordering is because the 
(incremental) insertion operation on a particular level requires a 
cell search (Pre-emptive) operation performed on all higher 
levels. So performing an Outliers Check operation first on upper 
levels is likely to improve the performance of fitness check 
operations performed on lower levels.  

II.  (Mature) Cell Merging 
Another consequence of uncontrolled order of item insertion is 
the erroneous splitting of cells during the early stages of HCT 
body formation. Such cases occur especially when incoming 
items cannot form a focused cell initially due to the lack of items 
present (to make the cell compact or dense enough) or a distinct 
set of items initially inserted and more than one cell was needed 
to achieve the required compactness level. As an illustrative 
example shown in Figure 3, such an initial cell splitting decision 
might have been reasonable and necessary for the current set of 
items so far present in the cell; however, with the arrival of the 
newcomers, the two cells can be conveniently merged into a 
single cell, which still achieve a sufficient compactness level.  

Cell merging operation traces the items on the upper level, 
using the MST branch information of each cell. The closest 
(minimal) distance eliminates the need for searching the most 
suitable candidate cells for merging on the lower level. Let d be 
the distance (branch weight) of two nucleus items on the upper 

level with covering radii, 1
Cr and 2

Cr . If 21
CC rrd −≤  then 

merging can directly be granted since one cell can cover the other 
cell items. In a generic case, a more flexible condition can be 
applied, such as 21. CC rrkd −≤ where 1>k . If the merged cell 

cannot provide a compactness value that its level requires, it will 
be subject to a mitosis operation anyway during the post-
processing stage performed after the merging operation.  
Otherwise the post processing operation removes both the (old) 
cells and their nucleus items from the HCT body and inserts the 
new (merged) cell and its nucleus item instead. 

1C
3C′

2C

4C′

3C

4C

21+′C
HCT with 100 items in 4 cells HCT with 1000 items in 3 cells

 

Figure 3: Merging operation is applied over cells 1C  and 2C . 
Due to space limitations, the algorithmic details of both 

Outliers Check and Cell Merging are skipped in this article. 

IV. PQ OVER HCT 
Progressive Query (PQ) [15] is a recently proposed retrieval 
scheme. It basically presents Progressive Sub-Query (PSQs) 
retrieval results periodically to the user and allows the user to 
interact with the ongoing query process. Among other traditional 
query techniques such as exhaustive search based Normal Query 
(NQ), kNN and range queries, PQ presents the following 
significant innovative features:  

• It is an efficient technique, which works within both 
(similarity) indexed and non-indexed (meaning that no similarity 
indexing method applied) databases onto which it is the unique 
query method that may provide “faster” retrievals (than NQ and 
requires less memory and CPU power. 

• The most important advantage is that it provides user 
interaction with the ongoing query operation. The user can 
browse the PSQ results so far obtained, can perform “relevance 
feedback”, and can stop the query operation if satisfactory results 
are obtained so far.  

• It can also be applied to (similarity) indexed databases 
efficiently (to get the most relevant retrieval results in the fastest 
possible way) and in this case it shows  “dynamic kNN/range 
query” like behavior where k (or ε) increases gradually with time 
and hence the user can have the advantage of assigning it by 
seeing (and judging) the results.  

Due to these advantages, we use PQ to perform similarity 
query operations over HCT. Before focusing on the details of PQ 
operations over HCT we first present a brief overview about PQ 
in the next sub-section. 

A. PQ Overview 
Basically PQ performs over a series of sub-queries, each of which 
is a fractional query process performed over a sub-set of database 
items. The items within a sub-set can be chosen by any 
convenient manner such as randomly or sequentially but the size 
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of each sub-set is determined with respect to a suitable (to human 
perception) unit such as time (period, ptt = ).  

PQ can be performed over any indexed database as long as a 
query path (QP) can be formed over the clusters (partitions) of 
the underlying indexing structure. The most advantageous way to 
perform PQ is to form QP according to indexing structure so that 
the most relevant items can be retrieved in earlier periodic 
updates of PQ as it proceeds over QP. More detailed information 
about PQ along with a hypothetical QP formation can be found in 
[15]. 

B. PQ Operation over HCT  
When an indexing structure is available for a database, the 

most advantageous way to perform PQ is to use the indexing 
information so that the most relevant items can be retrieved in 
earlier PSQ steps. As an example, Figure 4 shows a hypothetical 
clustering scheme and the formation of the query path (QP) over 
which PQ will proceed during its run-time. This sample 
illustration shows 4 clusters (partitions or nodes), which contain a 
certain number of items (features) and the QP is formed 
according to the relative (similarity) distance to the queried item 
and its parent cluster. Therefore, PQ will give the priority to 
cluster A (the host), then B (the closest), C, D, etc. Note that the 
QP might differ from the final retrieval result depending on the 
accuracy of the indexing scheme. For instance, query path gives 
priority to item B2 on the search with respect to item C4 but item 
C4 may have more similarity (relevancy) with respect to the 
queried item A2. When the retrieval results are formed it will 
eventually be ranked higher and presented earlier to the user by 
PQ. Even though PQ corrects this misleading result due to the 
erroneous indexing (note that in this case item C4 should have 
belonged to cluster B, not C), as a possible consequence of this, 
the retrieval of C4 might be delayed to the next periodic PSQ 
retrieval.  

PQ operation over HCT is executed synchronously over two 
parallel processes: HCT tracer and a generic process for PSQ 
formation using the latest QP segment. HCT tracer is a recursive 
algorithm, which traces among the HCT levels in order to form a 
QP (segment) for the next PSQ update. When the time allocated 
for this operation is completed, this process is paused and the next 
PSQ retrieval result is formed and presented to the user. Then 
HCT tracer is re-activated for the next PSQ update and both 
processes remain active unless the user stops PQ or the entire PQ 
process is completed.  

As mentioned earlier, QP is formed segment by segment for 
each PSQ update. Once a QP segment is formed, then the 
periodic sub-query results are obtained within this segment (group 
of items) and then this result (the sorted list of items) is fused 
with the last PSQ update to form the next PSQ retrieval result. 
Starting from the top level, HCT tracer algorithm recursively 
navigates among the levels and their cells according to the 
similarity of the cell nucleuses. This is similar to the MS-Nucleus 
cell search process, only this time it will not stop its execution 
when it finds the “most similar” cell on the ground (target) level 
but continues its sweep by visiting the 2nd most similar, then 3rd 
and so on, while inserting all visited cell items on the ground 
level to the current QP segment. Starting from the top level, each 
cell it visits on an intermediate level (any level except the ground 
level), HCT tracer forms a priority (item) queue, which ranks the 
cell items according to their similarity with respect to the query 
item. Note that these items are nothing but the nuclei on the lower 
level. When the tracing operation is completed on the lower level, 

HCT tracer retreats to the upper level (cell) where it came from.  
The process is terminated when the priority queue of the top level 
(cell) is depleted, which means, the whole HCT body has been 
traced. Within the implementation of HCT tracer, we further 
develop an internal structure that prevents redundant similarity 
distance calculation, that is, the similarity distances between the 
items of the cells in intermediate levels are calculated only once 
and used in the lower levels whenever needed. In fact this is a 
general property of overall PQ operation, all the 
(computationally) costly operations such as similarity distance 
calculations, loading the features from disc to the system memory, 
etc. are performed only once and shared between the processes 
whenever needed.  

 
Figure 4: Query path formation in a hypothetical indexing 

structure. 
The following HCTtracer algorithm implements HCT 

tracer operation, which basically extracts the next QP segment 
into a generic array, ArrayQP[]. It is initially called with the 
top-level number (topLevelNo) and an item (item-MS) from 
the single cell on the top level. 

Let item-MS be the (next) most similar item to the query 
item, item-Q, on the (target) level indicated with a number, 
levelNo. HCTtracer algorithm can then be expressed as 
follows: 

 

Note that this algorithm is executed as a separate process 
(thread) and can be paused externally from the main PQ process 
when the time comes for the next PSQ update. An example HCT 
tracer process for an external query item, Q, is illustrated in 
Figure 5. 

HCTtracer (ArrayQP[], levelNo, item-MS) 
 Let cell-MS be the owner cell of item-MS. 
 If (levelNo = 0) then do: // if this is ground level 

o Append all items in cell-MS into ArrayQP[]. 
o Return.  

 Else do: // if this is an intermediate level 
o Create the priority queue of cell-MS: queue-MS. 

o For MSqueueOi
N −∈∀ , do: // for all sorted 

(nucleus) items do: 

 HCTtracer (ArrayQP[] , levelNo-1, i
NO )   

 Return. 
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Figure 5: QP formation on a sample HCT body. 

V. HCT BROWSING 
Generally speaking, there are two ways to retrieve items from a 
(multimedia) database: through a query process such as query by 
example (QBE) and browsing. In the previous section, an 
efficient query method (PQ) implementation over the proposed 
indexing scheme, HCT was presented. Moreover, HCT can 
provide a basis for accomplishing an efficient browsing scheme, 
namely HCT Browsing [16]. The hierarchic structure of HCT is 
quite appropriate to give an overview to the user about what lies 
under the current level so that if well supported via user friendly 
GUI, HCT Browsing can turn out to be a guided tour among the 
database items. The details of HCT Browsing and the necessary 
GUI support within MUVIS framework can be found in [16].  

Two examples of HCT Browsing with inter-level navigations 
are shown in Figure 6. In both illustrations, the user starts the 
browsing from the 3rd level within a 5-level HCT body and, due to 
the space limitations only some portion of HCT body (where the 
browsing operation is performed) is shown. Note that in both 
examples, HCT indexing scheme provides more and more 
“narrowed” content in the descending order of the levels. For 
example, the user chooses an “outdoor, city, architecture” content 
on the third level where it yields “outdoor, city, beach and buses” 
content carrying cell on the second level. The user then chooses a 
multi-color “bus” and then navigating down to the first level, it 
yields a cell, which owns mostly “buses” with different colors, 
and finally choosing a “red bus” image (nucleus item) yields the 
cell of “red buses” on the ground level. Similar series of examples 
can also be seen in the sample HCT Browsing operation within a 
texture database. The cells are getting more and more compact 
(focused) in the descending order of level and the ground level 
cells achieve a “clean” clustering of texture images showing high 
similarity. 

Level  3

Level  2

Level  1

Level  0

Level  3

Level  2

Level  1

Level  0

Figure 6: Two HCT Browsing examples both of which 
start from the third level within Corel_1K (top) and 
Texture (bottom) databases.  The user navigates among 
the levels shown with the lines through ground level. 

VI. EXPERIMENTAL RESULTS 
This section is divided into three sub-sections, each includes 
several experiments performed to test the clustering, indexing and 
retrieval (via PQ) capabilities of HCT and perform comparative 
evaluation with M-Tree. It is, however, not straightforward to do 
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a direct performance comparison between HCT and M-Tree due 
to the strict parameter dependency and various internal modes of 
M-Tree. For instance an M-Tree body (index structure) with 
M=10 will be completely different than the one with M=11. 
Similarly using one of different split policies (Balanced, 
Generalized Hyperplane, etc.) or promote methods (m_RAD, 
mM_RAD, M_LB_DIST, RANDOM, etc.) [10] will result in a 
completely different indexing body than using another. Therefore, 
we do the partial comparisons between major M-Tree and HCT 
properties such as fixed (with a certain M) versus flexible cell size 
(HCT) policy and MS-Nucleus versus Pre-Emptive cell search 
algorithms. Section A presents the clustering performance of HCT 
on synthetic databases, which contain a certain number of natural 
clusters varying in size, form, density and shape. Computational 
complexity and clustering accuracy of HCT will be presented and 
especially the “cost vs. accuracy” analysis for the periodic fitness 
check will be performed. The rest of the sections are devoted to 
indexing (and retrieval via PQ) performance of HCT in real 
multimedia databases. In order to present the experimental 
conditions, Section B briefly introduces MUVIS and particularly 
MBrowser application under which HCT Browsing and PQ over 
HCT retrieval schemes are primarily developed and tested. 

Afterwards, we begin the comparative evaluation of HCT versus 
M-Tree indexing policies, particularly focusing on the amount of 
cell corruption with the increasing database size. Finally, Section 
C is devoted to experimental results obtained from PQ over HCT 
operations and their evaluation with respect to Sequential PQ and 
NQ. 

A. HCT Clustering Performance in Synthetic Databases 
HCT in the most basic terms can function as a clustering 
algorithm, which groups items with respect to their proximity in 
multidimensional (feature) space. In order to test its clustering 
performance, we create several synthetic databases, which 
provide straightforward (clean) clusters for the human eye in 2-D 
for illustration purposes. Four databases are depicted in Figure 7 
(left) with various numbers of items, which are represented by 
white pixels distributed in a 2-D space according to some 
formations (clusters). The performance evaluation includes both 
computational complexity measurements and clustering accuracy 
with and without the use of the optional (periodic) Fitness Check 
operation in order to examine its effect on the overall 
performance. 

 
 

 
 

Figure 7: 4 synthetic databases with different scales and dimensions (left) and the cluster boundaries obtained via HCT 
(right)

1) Clustering Accuracy: HCT naturally forms the clusters on the 
ground level (level 0) where each cell corresponds to a unique 
cluster. In order to test the clustering accuracy of HCT, the 
optional HCT operation, periodic Fitness Check is enabled to see 
whether or not HCT can converge to the (natural) clusters 
present; otherwise, early mitosis operations may cause 
irreversible clustering errors. Another important factor in the 
evaluation is to examine HCT performance against potential 
variations in database size and cluster properties. The examples 
shown in Figure 7 are selected particularly to provide significant 
variations in the shape and size of the clusters, cluster density and 
inter-cluster distances.  Moreover, in order to simulate dynamic 
construction of such a database, each synthetic example is formed 
by different numbers of items and clusters into which the items 
(white dots) are inserted one by one (i.e. incremental HCT 
formation) in a random order to examine its robustness against 

such random arrivals. The same HCT instance is used (with the 
same HCT parameters) to perform clustering all of the examples 
and the results are shown in Figure 7 (right). Each contour shown 
on the right of Figure 7.represents a cell formed at the end of HCT 
formation process, and if more than one cell is formed for a 
cluster, then those cells are indicated with dark and light shading. 
Due to random insertions, we also observed that the clustering 
scheme can be slightly different, i.e. say one or a few changes 
may occur, so each example is clustered 10 times and a typical 
(the most frequent) clustering scheme is shown. It was also 
noticed that the number of cells is always equal to or larger than 
the number of clusters, i.e. a slight over-segmentation may 
happen, but no under-segmentation.  In order to show the loose 
parameter dependency of HCT, for each experiment we used 
random values of 0, kN M and T

MN within the following values: 
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3012,7.0,25.0,126 0 ≤≤≤≤≤≤ T
MM NkN . The following 

regularization function is used for clustering. 

CCCCCCCCCCC NwrKNwrfCF )max()()),max(,,,( σμσμ +== (4) 

where K, is a scaling coefficient; Cμ  and Cσ  are the mean and 

standard deviation of the MST branch weights, Cw , of cell C; 

Cr is the covering radius; and MC NN >  is the number of items 

in cell C. With an increasing number of items in the cell ( CN ) 

and in order to keep the cell compact (i.e. LC CThrCF ≤ ),  

MST branch statistics such as Cμ , Cσ , max( Cw ) and 

Cr should all remain small in order to yield a more focused 
cell. Otherwise, the cell undergoes a mitosis operation, which 
eventually reduces CN  and max( Cw ) and separates the 
irrelevant item or group of items from the cell. 

 

Figure 8:  Ground level LCThr  (top) and cell number 
(bottom) plots for the example (A) in Figure 7. 

During the clustering experiments performed, HCT with 
periodic Fitness Check operation achieves a high clustering 
accuracy and also robustness against the random arrivals of the 
items. Moreover, when a cluster is split into multiple cells, in 
most cases (>95%) this happens to the same clusters, and these 
are the ones with loose item density and/or big and long shapes. 
This is an expected result since the regularization function for 
compactness feature penalizes such cases with parameters such 

as Cμ , Cσ  and Cr . This can be easily seen in examples A and 
C (the longest clusters) and B (the biggest/loose clusters) in 
Figure 7. Furthermore, despite the significant variations in inter-
cluster distances, number of items per cluster, shape/density of 
each cluster and the total number of clusters/items in each 
example, HCT accurately extracts the true clusters. In this aspect, 
one can conclude that the Median operator (with a trend factor, 
i.e. 8.02.0 0 << k ) for the estimation of LCThr  value for a 
particular level L works effectively to allow the cells to grow all 
the way to the “true” boundaries of each cluster but surely 
avoiding to merge multiple clusters (separated with a certain 
inter-cluster distance) into one cell. In the experiments 
performed, LCThr shows a smooth convergence towards a steady 
value (after some initial transient) since the cells become more 
compact (denser) due to ever-increasing amount of items in the 
cells.  As a typical example, the plots shown in Figure 8 illustrate 

the dynamic LCThr  setting (top) and the number of cells 
(bottom) converging to the close vicinity of true number of the 
clusters (with incoming items) during the HCT formation for the 
clustering example (A) in  Figure 7. 

 

 

Figure 9: Plots showing SD Computations with (top) and 
without (bottom) Fitness Check during HCT formation of the 

example (D) in Figure 7. 

 

 
 

Figure 10: Plots showing SD Computations (top) with and 
(bottom) without Fitness Check during HCT formation for 

example (A) in Figure 7.  
 
2) Computational Complexity Analysis: The computational 
complexity analysis is based on the amount of (dis-) similarity 
(proximity) distance computations performed during the 
incremental formation of the HCT body. These computations are 
performed for three individual HCT operations: 

• (Pre-emptive) cell search: the computations performed to 
find out a host cell on a certain level.  

• Item insertion into a host cell: the computations 
performed to insert a new item into a cell MST. 
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• Item(s) removal from a cell: the computations performed 
to rebuild the cell MST after item (or items) removal. 

So the total number of computations is the sum of the ones 
from the individual operations as listed above and it can be 
measured with and without performing periodic Fitness Check 
operation to see its effect on the computational complexity. Two 
plots representing the HCT formation of the clustering examples 
(A) and (D) in Figure 7 are shown in Figure 10 and Figure 9 
respectively. 

The Fitness Check operation usually increases the 
computations for the item insertions and reduces the ones for cell 
search since its basic outcome is the increase in the cell 
populations and thus reduction in the HCT height (total number 
of levels). However, the total number of computations is 
increased due to the fact that the (Pre-emptive) cell search 
requires ))log(( nnO ; whereas, dynamic MST formation (the 

operation for item insertion) requires )( 2nO operations. 
Especially for the highly populated examples, where one or more 
clusters host a massive number of items, the item insertion 
operations will eventually dominate the other two and therefore, 
becomes the major part of overall computations. A typical 
example is given in the example (A) in Figure 7 (6 biggest 
clusters have more than 2000 items each) and its performance 
plot shown in Figure 10 (left). In such a case the order of 

computations will be between )( 2nO  and ))log(( nnO , see 
Figure 10 (left). On the other hand, when the cluster sizes are 
limited within a reasonable upper bound, HCT formation can still 
be a ))log(( nnO  operation even with the presence of periodic 
Fitness Check operation, as one typical example is given in the 
example (D) in Figure 7 and its plot is shown in Figure 9 (left) 
3) M-Tree vs. HCT: Two major properties of HCT, flexible cell 
size and Pre-emptive cell search are evaluated against M-Tree 
policies (i.e. fixed cell size: M, and MS-Nucleus cell search) in 
terms of clustering accuracy and computational cost. In fact it is 
obvious to see that no matter how M is chosen, M-Tree is bound 
to fail to extract the natural clusters showing significant variations 
in size, shape and density. Setting M too big will cause erroneous 
merging of small clusters to their close neighbors (under 
clustering) or setting M too small will fraction several (big) 
clusters into a large number of cells (over clustering) and hence 
the overall indexing body will be too crowded and not so useful 
for any indexing or clustering purposes. Table I presents the 
number of cells and SD computations for the examples in Figure 7 
for three different HCT construction scheme. The first and second 
rows present regular HCT constructions with and without 
applying periodic Fitness Check (FC), the third row presents 
clustering with M-tree policies (with M=12 and using MS-
Nucleus cell search).  
 

Table I: Number of cells and SD computations for the synthetic examples shown in Figure 7. 

 Number of Cells (Clusters) Number of SD Computations (x1000) 
 (A: 48) (B: 10) (C: 59) (D: 42) (A) (B) (C) (D) 

HCT (with FC) 50 13 62 42 17945.4 55.6 8993.96 192.27 
HCT (no FC) 153 55 179 146 3189.5 23.52 1437.03 136.03 

M-Tree (M=12) 3744 108 2330 377 2038.13 25.94 1104.74 123.38 
 

As it can be clearly seen from this table, M-Tree policies 
cannot cope with any clustering scheme and usually result in an 
extremely over-crowded clustering whereas even without the 
presence of periodic Fitness Check, HCT policies, especially the 
flexible cell size property can mostly avoid such a degraded 
scheme and achieves a reasonable clustering performance with 
slight increase in the computational cost. Of course, the best 
clustering performance is obtained with the use of the periodic 
Fitness Check; however, the computational cost is drastically 
increased especially when there are cells carrying massive 
number of items (e.g. A and C in Figure 7) due to the 
aforementioned reason. 

B. HCT Multimedia Indexing within MUVIS 
MUVIS framework is developed to bring a unified and global 
approach to indexing, browsing and querying of various 
multimedia types such as audio/video clips and still images. One 
of its major applications is DbsEditor, which performs offline 
feature extraction and indexing operations along with some basic 
database management tasks such as creation and editing. 
MBrowser is the primary media browser and retrieval application 
into which PQ technique is integrated as the primary retrieval 
(QBE) scheme. A sequential scan based Normal Query (NQ) is 
the alternative scheme within MBrowser. Both PQ modes 
(sequential and over HCT) and NQ can be used for retrieval of 
multimedia primitives with respect to their similarity to a queried 
media item (an audio/video clip, a video frame or an image). 

Similarity distances will be calculated by the particular functions, 
each of which is implemented in the corresponding visual/aural 
feature extraction (FeX or AFeX) modules. More detailed 
information about MUVIS can be found in [18], [19] and [24]. 

In the experiments performed in this section, we used 6 sample 
(multimedia) databases:  

1) Open Video Database: This database contains 1130 
video clips, each of which is downloaded from “The Open Video 
Project” web site [26]. The clips are quite old (from 1960s) but 
contain color video with sound. The total duration of the database 
is around 20 hours.  

2) Corel_1K Image Database: There are 1000 medium 
resolution (384x256 pixels) images from diverse contents such as 
wild life, city, buses, horses, mountains, beach, food, African 
natives, etc.  

3) Corel_10K Image Database: There are 10000 low 
resolution images (in thumbnail size) from similar contents with 
Corel_1K. 

4) Corel_60K Image Database: The entire Corel database 
with 60000 medium resolution images. 

5) Shape Image Database: There are 1500 black and white 
(binary) images that mainly represent the shapes of different 
objects such as animals, cars, accessories, geometric objects, etc. 

6) Texture Image Database: There are 1760 texture images 
representing the pure textures from several materials and products. 
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Table II: The databases and their features. 

Feature Type Texture Color Shape Audio 

Features Used Gabor [23]  
GLCM [27] 

HSV Hist. 
YUV Hist. Edge Direction Hist. MFCC [30] 

Database Number 1,2,3,4 and 6 1,2,3 and 4 1,2,3,4 and 5 1 
 
Table II presents what features are used in the sample 

databases. All experiments are carried out on a P5 1.8 GHz 
computer with 1024 MB memory. In order to have unbiased 
experimental evaluations, each query experiment are performed 
using the same queried multimedia item with the same instance of 
MBrowser application. The evaluations of the retrieval results by 
PQ are performed subjectively using ground-truth method, i.e. a 
group of people evaluates the query results of a certain set of 
retrieval experiments, upon which all the group members totally 
agreed about the query retrieval performance. Among these a 
certain set of examples were chosen and presented in this article 
for visual inspection and verification. 
1) HCT vs. M-Tree Indexing: In this section we will particularly 
make the comparative performance evaluations based on the cell 
search algorithms and cell size policies of HCT and M-Tree. The 
sample MUVIS databases are indexed using both (HCT and M-
Tree) policies. We used typical settings ( 6=MN , 24=T

MN ) for 
all the experiments with the same regularization function given in 
Eq. (4). For the numerical comparison, the ground level statistics 
are used to measure the average cell compactness and the total 
amount of computations performed during the entire indexing 

process. The cell compactness is a measure of how focused the 
cell items are and it is therefore proportional with the number of 
items, CN , in a cell C and inversely proportional with the 

covering radius, Cr . In this way it can be defined for any cell 

(mature or not) containing multiple items (i.e. 1>CN ). So the 
following expression, which is nothing but the ratio of the average 
cell size to average covering radius can be used to calculate the 
average cell compactness for a level, l, in HCT. 

1)(

)(

>∈

∈

∑
∑

=

CNlLC
C

lLC
C

l
CC r

N
μ  (5) 

where L(l) is the set of cells on level l. presents the following 
statistics obtained from the sample databases by using both M-
Tree (with M=12) and HCT policies: the average cell compactness 
for ground level ( 0

CCμ ), the total number of cells and the 
percentage of mature cells along with the number of SD 
computations. 

Table III: Statistics obtained from the ground level of HCT indexing of the sample MUVIS databases. 

Open 
Video 

Open 
Video Statistics 

(l = 0) 
Construction 

Policy (Visual) (Aural) 
Corel_1K Corel_10K Corel_60K Shape Texture 

M-Tree 5.971 3.469 5.007 5.084 8.094 31.231 57.861 
HCT 7.418 5.136 6.307 17.356 26.142 39.688 72.599 

 
 

HCT (with FC) 8.838 6.825 8.065 21.522 34.004 43.117 85.62 
M-Tree 227 240 248 2116 7864 260 306 

HCT 203 164 223 584 2304 227 288 Cell 
Number 

HCT (with FC) 156 85 149 367 1386 168 220 
M-Tree 70.343 67.556 72.57 1306.23 12604.76 82.55 95.629 

HCT 244.814 162.271 191.14 4439.03 73782.01 251.21 240.802 
SD Comp. 
Number 
(x1000) HCT (with FC) 301.962 159.511 251.945 4649.23 103427.14 288.74 277.382 

 
The numerical results given in Table III approve that two key 

HCT policies, namely Pre-emptive cell search algorithm and 
flexible cell size property, achieve a major compactness 
improvement with respect to what M-Tree can establish. One of 
the main reasons is that M-Tree policies usually produce 
excessive (more than necessary) number of cells, as we named as 
“the crowd effect” or in other words an over-crowded scheme, 
which is mainly due to fixed cell size property and this fact can 
be clearly seen by the cell number data in Table III. Therefore, 
the group of media items having the same content is fractioned 
into numerous cells, which in turn makes the indexing body over-
crowded. Such a crowded indexing body further makes the MS-
Nucleus cell search algorithm less accurate, inducing more and 
more corruption proportional with the database size due to the 
reasoning explained earlier. Once the corruption evolves into a 
certain level, it further causes more corruption in a positive 
feedback mechanism since any statistical measures from the over-

crowded and corrupted cells will be less reliable. So the speed and 
accuracy of cell search will further be degraded. As a result all the 
M-tree levels, particularly the ground level where all the database 
items are present, will contain smaller and corrupted (loose) cells 
(e.g. see Figure 11). This can be verified by comparing the 
respective values of 0

CCμ  and cell number data obtained from 
both approaches on Corel_1K, Corel_10K and Corel_60K 
databases.  
 Apart from the database size, the reliability (discrimination 
power) of the feature(s) is also an important factor. With the 
improved discrimination factors of the features, more robust 
similarity distance measures can be obtained and hence even more 
focused cells can be formed using Pre-emptive cell search 
algorithm. Using ground-truth methodology over several QBE 
oriented retrieval experiments, the most reliable features are 
proven to be the texture features (GLCM and Gabor) extracted 

0
CCμ
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particularly for Texture database. Hence, a relatively high 
difference in terms of average cell compactness can be seen in 
Texture database which has a rather small size (e.g. only 1760 
images). As some visual examples, Figure 11 shows four ground 
level cells obtained from both indexing policies over this 
database. It is obvious from the figure that the cells from the 
proposed HCT policies show a high compactness (textural 
similarity) level; whereas, M-tree cells (with M=12) show signs 
of corruption (dis-similarity) among its items. It can be thought 
that with a smaller M (i.e. M=6), such irrelevant images can be 

(forcefully via split mechanism) removed from the host cell so as 
to yield a focused cell. However, this will cause a massive “crowd 
effect” for the cells at any level, henceforth causing more 
corruption (due to its sub-optimum cell search, MS-Nucleus) since 
we know that there are several groups in this database having a 
large number of images (i.e. >60) with the same texture category. 
In short no matter what value is set for M, as long as the cell size 
is kept fixed and MS-Nucleus cell search is used, M-Tree is bound 
to induce an indefinite level of corruption into any multimedia 
database. 

(c)HCT cell M-Tree cell

(b)HCT cell M-Tree cell(a)HCT cell M-Tree cell

(d)HCT cell M-Tree cell

 
Figure 11: 4 ground level cells (a, b, c and d) in Texture database indexed by HCT (left) and M-Tree (right) policies. 

The primary cost for using HCT policies is the increased 
computational complexity for the construction of the indexing 
structure. However, since indexing is an off-line process that is 
performed only once during the creation of the database, this cost 
can be compensated by the accuracy and time gains during query 
and browsing, both of which are real-time processes that are 
subject to be performed several times during the lifetime of any 
multimedia database. Moreover M-tree indexing over a large 
multimedia database might cause such a corruption level that 
makes the indexing nearly useless for any content-based querying 
and browsing purposes. 

C. PQ over HCT 
Two tests are performed to evaluate the performance of PQ 
operations over HCT indexing structure. First the relevancy of the 
Query Path (QP) where PQ will proceed can be examined from a 
typical QP (similarity distance) plot. Such a plot can indicate 
whether or not the order of the items within QP is formed in 
accordance with the similarity of the query item so that the most 
similar items can be retrieved earliest. In Figure 12 the query 
image comes from a group of 97 similar images among 1000 
images in Corel_1K database. It can be seen from the figure that 
HCT tracer successfully captures all relevant items in the earliest 
possible order, i.e. the beginning of QP. Therefore, PQ operation 
will be ranking and presenting them (first) to the user 
immediately after the query operation is initiated. Another 

important remark should be made about the “up-hill trend” of the 
QP plot, that is, it traces along with the increasing order of SD 
(dissimilarity) as intended.  

 
Figure 12: QP plot of a sample image query in Corel_1K 

database. 
The second performance evaluation is about the speed (or 

timing) of PQ over HCT operation compared with the Sequential 
PQ and NQ. In an earlier work [17] where the initial version of 
HCT was first proposed, a promising gain in speed was observed 
for small multimedia databases. In the current HCT, particularly 
designed for large databases, we perform several retrieval 
experiments in the form of QBE on large databases, such as 
Corel_60K database, where 100 PQs and NQs are performed with 
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100 query images bearing a pure content. We used sec1=pt  

and thus measured the query time to retrieve relevant images (a 
maximum of one miss was allowed) among the first (highest 
ranked) 12 results. The query histograms are drawn according to 
the measurements and shown in Figure 13.  

As expected PQ over HCT achieves the earliest retrieval times 
where almost half of the retrievals are achieved within one 
second and only in 7 (out of 100) PQ over HCT experiments 
resulted in retrieval times exceeding 4 seconds. As a traditional 
query mechanism, NQ in general provides the slowest retrieval 
speed, almost all in 18 seconds, only after the full-scan search is 
completed over the entire database. Sequential PQ, on the other 
hand, provides a significantly varying scheme since it is designed 
for the databases with no similarity indexing structure (hence 
HCT is not used at all) and the majority of the query results 
provides the required amount of relevant items after 11 or more 
seconds.  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

PQ
 o

ve
r H

C
T N
Q

0

10

20

30

40

50

60

70

80

90

100

n 
u 

m
 b

 e
 r 

  o
 f 

  q
 u

 e
 r 

i e
 s

query time (sec)

Query Time Histograms

PQ over HCT

Sequential PQ

NQ

 
Figure 13: The query time histograms obtained from 100 PQs 

(using both modes) and NQs in Corel_60K database. 

VII. CONCLUSIONS 
In this paper, we proposed HCT indexing structure designed for 
multimedia databases to achieve the following innovative 
properties: 

• HCT is a dynamic, parameter independent and flexible 
cell (node) sized indexing technique, which is optimized to 
achieve as focused cells as possible. 

• HCT is particularly designed for indexing multimedia 
databases, which are created incrementally and subject to random 
item insertions and removals. Furthermore, their visual and aural 
features are noisy descriptors and usually have a limited 
discriminative power. 

• By means of the flexible cell size property, one or the 
least number of cell(s) are created to host the group of similar 
items, which in effect reduces the performance degradations 
caused by “crowd effect” that is a natural deficiency for M-Tree 
due to its fixed cell size policy.  

• During their life-time cells are put under a close 
surveillance of their levels in order to enhance the compactness 
using mitosis operations whenever necessary to get rid of 
dissimilar item(s). Furthermore, for an item insertion, a pre-
emptive cell search technique is used to find out the most suitable 
(target) cell on a host level. In this way another major source of 
corruption due to sub-optimum M-Tree cell search technique 
(MS-Nucleus) is also avoided. 

• HCT has a dynamic reaction capability in such a way 
that the cell and level primitives are updated whenever the need 

arose. For example a cell nucleus item is changed whenever a 
better candidate is available and once a new nucleus item is 
assigned, its owner cell in the upper level is determined after a 
new cell search instead of using the old one’s owner cell. Such 
instantaneous reactions keep the HCT body intact by doing the 
required updates after any HCT operation.  

• By means of a dynamic MST formation within each cell, 
the optimum nucleus item can be assigned whenever necessary 
and with no extra cost. Furthermore the optimum split 
management can be done when the mitosis operation is performed 
(again with no cost). Most important of all, MST provides a 
reliable compactness measure via “cell similarity” for any item 
instead relying on only to a single (nucleus) item. By this way a 
better judgment can be done whether or not a particular item is 
suitable for a mature cell.  

• HCT is mainly designed to work with PQ in order to 
provide the earliest possible retrievals of the most relevant items. 
Furthermore, HCT indexing body can be used for efficient 
browsing and navigation among database items. The user is 
guided at each level by nucleus items and several hierarchic levels 
help the user to have a “mental picture” about the entire database. 

Experimental results show that HCT achieves all the 
abovementioned properties and capabilities in an automatic way 
with no or loose parameter dependency. It further achieves 
significant improvements in cell compactness and shows no sign 
of corruption when the database size is getting larger. The 
experiments performed over several multimedia databases suggest 
that HCT usually yields a better clustering performance when the 
discrimination power of the features is significant and henceforth 
the cells can provide better item relevancy for the semantic point 
of view.  

Current and planned future studies include: the design of 
alternative models for enhanced level compactness threshold 
setting and a better cell compactness regularization function or a 
template based model and the implementation of a generic 
“relevance feedback” option during an HCT Browsing operation 
so that the user can manually edit and update any cell structure.  
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