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ABSTRACT 
 
Aquatic ecosystems are facing a growing number of human induced 
changes and threats. Macroinvertebrate biomonitoring is 
particularly efficient in pinpointing the cause-effect structure 
between slow and subtle changes and their detrimental 
consequences in aquatic ecosystems. The greatest obstacle to 
implementing efficient biomonitoring is currently the cost-intensity 
of human expert taxonomic identification of samples. While there is 
evidence that automated recognition techniques can match human 
taxa identification accuracy at greatly reduced costs, so far the 
development of automated identification techniques for aquatic 
organisms has been minimal. In this paper, we focus on advancing 
classification and data retrieval that are instrumental when 
processing large macroinvertebrate image datasets. To accomplish 
this for routine biomonitoring we propose an automated and highly 
accurate river macroinvertebrate classifier using evolutionary RBF 
networks. The best classifier, which is trained over a dataset of river 
macroinvertebrate specimens, is then used in the MUVIS 
framework for the efficient search and retrieval of particular 
macroinvertebrate peculiars. Classification and retrieval results 
present such a delicate accuracy that can match experts’ ability for 
taxonomic identification.  
 
Keywords: Biomonitoring, classification, evolutionary 
radial basis function networks, Benthic macroinvertebrate. 
 

1. INTRODUCTION 
 
Aquatic ecosystems are facing a growing number of 
anthropogenic pressures operating at several time and spatial 
scales (e.g. eutrophication, global warming). Well planned 
biomonitoring is essential to detect the cause-effect structure 
between the often subtle pressures and their ecosystem 
consequences. The resulting growing global need to implement 
more biomonitoring is apparent but due to the cost-intensity of 
human expert taxonomic identification of samples, this need 
cannot currently be met. Automatic and semi-automatic signal 
and image processing techniques have been successfully applied 
in similar fields of application to solve such challenges. For 
instance, automatic image recognition techniques of aquatic 
phytoplankton have been shown to match human taxa 
identification accuracy at greatly reduced costs [1]. Despite their 
obvious potential, the development of automated taxa 

identification techniques has long been hampered by the 
reluctance of taxonomic experts to embrace alternative methods 
of taxa identification. A detailed review on advances in 
automated taxa identification [2] deemed misconceptions, the 
lack of vision and the lack of enterprise, more limiting to the 
development of automated taxa identification than actual 
practical constraints. Research on automated recognition of 
aquatic organisms has mainly concentrated on plankton [3], 
while automated classification and particularly retrieval of 
freshwater macroinvertebrates has received very little attention 
[4]. In a recent work [5] on a set of river macroinvertebrates, a 
mean correct classification of 88.17% and 75.31% have been 
achieved in training and test sets, which matches the levels of 
human accuracy for other aquatic taxonomic groups [6]. 

An earlier work on classification of aquatic organisms has 
shown that neural networks usually outperform decision trees [7] 
and other classical statistical techniques [8]. Artificial neural 
networks (ANNs) have proven to perform complex 
classification tasks, provided that a proper structure for the 
network is selected and a suitable training technique is applied 
to a sufficiently representative set of data. Several researchers 
have attempted to design ANNs automatically with respect to a 
particular problem. The earlier attempts fall into two broad 
categories: constructive and pruning algorithms [9], [10], [11], 
[12], from which many deficiencies and limitations have been 
reported [13]. The efforts have then been focused on 
evolutionary algorithms (EAs) [14] particularly over Genetic 
Algorithm (GA) [15] and Evolutionary Programming (EP) [16], 
for both training and evolving ANNs. Most GA based methods 
have also been found quite inadequate for evolving ANNs 
mainly due to two major problems: permutation problem and 
noisy fitness evaluation [17]. Conceptually speaking, Particle 
Swarm Optimization (PSO), [18], has similar ties with the EA 
family. Only few researchers have investigated the use of PSO 
for evolutionary design of ANNs or to be precise, the radial 
basis function (RBF) networks.  

In an earlier work, [19], Multi-Dimensional Particle 
Swarm Optimization (MD PSO), which re-forms the native 
structure of swarm particles in such a way that they can make 
inter-dimensional passes with a dedicated dimensional PSO 
process, has been introduced. MD PSO eventually negates the 
necessity of setting a fixed dimension a priori, which is a 
common drawback for the family of swarm optimizers. In this 
paper, we shall use MD PSO for evolving RBF network, which 



is then used in the core of the proposed classification system. To 
achieve a computational cost efficiency, we shall use the same 
limited dataset as in [5] and apply the most basic and primitive 
geometrical features as detailed in [20]. In the feature space, 
MD PSO with fractional global-best formation (FGBF) 
technique [19] determines the optimal number of Gaussian 
neurons as well as their parameters (centroids and variances) by 
applying dynamic clustering over the training set. The training 
of the RBF classifier is then finalized by applying SuperSAB 
enhancement [21] of the Back-propagation (BP) algorithm, only 
to compute weights and biases (thetas). Since MD PSO is 
stochastic in nature, in order to maximize the classification 
accuracy, we evolve several RBF networks and choose the best 
one, which is then used for (dis-) similarity distance 
computation within the similarity-based queries of the MUVIS 
framework [22]. In this way the retrieval performance can be 
significantly improved, particularly as compared to the 
traditional query methods. 
 

2. RELATED WORK 
 
2.1  RBF Neural Networks 
 
A popular type of feedforward ANN is the RBF network [23], 
which has always two layers in addition to the passive input 
layer: a hidden layer of RBF units and a linear output layer. 
Only the output layer has connection weights and biases. The 
activation function of the thk  RBF unit is defined as, 
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where ϕ  is a radial basis function or, in other words, a strictly 
positive radially symmetric function, which has a unique 
maximum at N-dimensional center kμ  and whose value drops 
rapidly close to zero away from the center. kσ  is the width of 
the peak around the center kμ . The activation function gets 
noteworthy values only when the distance between the 
N-dimensional input X and the center kμ , kX μ− , is smaller 
than the width kσ . The most commonly used activation 
function in RBF networks is the Gaussian basis function 
defined as, 
where kμ  and kσ  are the mean and standard deviation, 
respectively, and ||.|| denotes the Euclidean norm. More detailed 
information about RBF networks can be obtained from [23] and 
[24].  
 
2.2 Dynamic Clustering by MD PSO with 
FGBF 
 
Instead of operating at a fixed dimension N, the MD PSO 
algorithm is designed to seek both positional and dimensional 
optima within a dimension range, ( maxmin DND ≤≤ ). In order to 
accomplish this, each particle has two sets of components, each 
of which has been subjected to two independent and consecutive 
processes. The first one is a regular positional PSO, i.e. the 
traditional velocity updates and following positional moves in N 
dimensional search (solution) space. The second one is a 
dimensional PSO, which allows the particle to navigate through 
dimensions. Accordingly, each particle keeps track of its last 
position, velocity and personal best position (pbest) in a 
particular dimension so that when it re-visits the same 

dimension at a later time, it can perform its regular “positional” 
fly using this information. The dimensional PSO process of each 
particle may then move the particle to another dimension where 
it will remember its positional status and keep “flying” within 
the positional PSO process in this dimension, and so on. The 
swarm, on the other hand, keeps track of the gbest particles in 
all dimensions, each of which respectively indicates the best 
(global) position so far achieved and can thus be used in the 
regular velocity update equation for that dimension. Similarly 
the dimensional PSO process of each particle uses its personal 
best dimension in which the personal best fitness score has so 
far been achieved. Finally, the swarm keeps track of the global 
best dimension, dbest, among all the personal best dimensions. 
The gbest particle in dbest dimension represents the optimum 
solution (and the optimum dimension).  

In a MD PSO process and at time (iteration) t, each 
particle a in the swarm, },..,,..,{ 1 Sa xxx=ξ ,  is represented 
by the following characteristics: 
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a  jth component (dimension) of the position of 

particle a, in dimension )(txda  
:)()(

, tvx txd
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a  jth component (dimension) of the velocity of 

particle a, in dimension )(txda  
:)()(

, txy txd
ja
a  jth component (dimension) of the personal best 

(pbest) position of particle a, in dimension )(txda  
gbest(d) : Global best particle index in dimension d 

:)(ˆ tyx d
j  jth component (dimension) of the global best position 

of swarm, in dimension d 
)(txda : Dimension component of particle a 
)(tvda : Velocity component of dimension of particle a 
)(~ tdx a : Personal best dimension component of particle a 
Figure 1 shows sample MD PSO and bPSO particles with 

index a. The bPSO particle that is at a (fixed) dimension, N=5, 
contains only positional components whereas MD PSO particle 
contains both positional and dimensional components 
respectively. In the figure the dimension range for the MD PSO 
is given between 2 and 9; therefore the particle contains 8 sets 
of positional components (one for each dimension). In this 
example, the current dimension where the particle a resides is 2 
( 2)( =txda ) whereas its personal best dimension is 3 
( 3)(~

=tdx a ). Therefore, at time t, a positional PSO update is first 

performed over the positional elements, )(2 txxa  and then the 
particle may move to another dimension by dimensional PSO.  
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Figure 1: Sample MD PSO (right) vs. bPSO (left) particle 
structures. For MD PSO ]9,2[ maxmin == DD  and at the 
current time t, 2)( =txda and 3)(~

=tdx a . For bPSO N=5.  
 
The clustering problem requires the determination of the 

solution space dimension (i.e. number of clusters) where in a 
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recent work [19] MD-PSO technique has been successfully used. 
At time t, the particle a in the swarm, },..,,..,{ 1 Sa xxx=ξ ,  has 
the positional component formed as, 
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meaning that it represents a potential solution (i.e. the cluster 
centroids) for the )(txda  number of clusters whilst jth 
component being the jth cluster centroid. Apart from the regular 
limits such as (spatial) velocity, dimensional velocity, maxVD  
and dimension range maxmin )( DtxdD a ≤≤ , the N dimensional 
data space is also limited with some practical spatial range, i.e. 

max
)(

min )( XtxxX txd
a

a << . In case this range is exceeded even 
for a single dimension j, )()(

, txx txd
ja
a  , then all positional 

components of the particle for the respective dimension )(txda  
are initialized randomly within the range (i.e. refer to step 1.3.1 
in MD-PSO pseudo code in [19]) and this further contributes to 
the overall diversity. In this work as well as in [19], the 
following validity index is used to obtain computational 
simplicity with minimal or no parameter dependency,  
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where eQ is the quantization error (or the average intra-cluster 
distance) as the Compactness term and α))(( txda  is the 
Separation term, by simply penalizing higher cluster numbers 
with an exponential, 0≥α .  

On the other hand, (hard) clustering has some constraints. 
Let }{)}({ ,

)(
, ja

txd
jaj ctxxC a == be the set of data points 

assigned to a (potential) cluster centroid )()(
, txx txd
ja
a for a 

particle a at time t. The partitions )](,1[, txdjC aj ∈∀ should 
maintain the following constraints: 
1) Each data point should be assigned to one cluster set, i.e. 
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2) Each cluster should contain at least one data point, i.e. 

)](,1[},{ txdjC aj ∈∀≠ φ  
3) Two clusters should have no common data points, i.e. 

)](,1[,},{ txdjiandjiCC aji ∈∀≠=∩ φ  
In order to satisfy the 1st and 3rd (hard) clustering 

constraints, before computing the clustering fitness score via the 
validity index function in (3), all data points are first assigned to 
the closest centroid. Yet there is no guarantee for the fulfillment 
of the 2nd constraint since )()( txx txd

a
a is set (updated) by the 

internal dynamics of the MD-PSO process and hence any 
dimensional component (i.e. a potential cluster candidate), 

)()(
, txx txd
ja
a , can be in an abundant position (i.e. no closest data 

point exists). To avoid this, a high penalty is set for the fitness 
score of the particle, i.e. 

}{}{,),( )(
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a

aa xxifZxxf for any j. 
Further details about MD PSO and dynamic clustering 

using MD PSO with FGBF are skipped due to space limitations 
and can be found in [19].  

 
3. CLASSIFICATION AND RETRIEVAL IN 

MACROINVERTABRATE DATABASES 
 
3.1 Feature Extraction for Classification 
 
Feature extraction and selection depend on the data and 

classifier used. As such, features can be seen as a part of the 
classifier system itself. However, such feature selection in case 
of images has remained empirical science and there are many 
possible features and enormous amount of their combinations. 
Examples of classical features are various edge, curve, ridge, 
blob, and corner based features, shape descriptors such as 
various moments and Fourier descriptors, simple textural 
features such as histograms of intensity, gradient [5] and 
co-occurrence [25]. Current state-of-the-art feature extraction 
methods includes Local Binary Patterns [26], Gabor packet 
based methods [27], scale invariant features of SIFT algorithm 
[28] and various other orientation based features such as in [29]. 
Also, wavelets and wavelet packets [30], [31] are convenient 
tools for acoustic and image analysis, compression, and feature 
extraction.  
 Among all these possibilities, in order to achieve a 
low-cost solution and to demonstrate the efficiency of the 
proposed classifier, we have applied a simple and basic feature 
extraction technique composed of mainly geometrical and 
statistical features. 15-D features of each macroinvertebrate 
image are extracted by using ImageJ, which is a public domain, 
Java-based image processing program developed at the NIH 
[20]. The following set of 15 features are selected by using 
ImageJ’s built in measurement and analysis functions: pixel 
value (grayscale) statistics { μ ,σ , Mode, Median, IntDen, 
Kurtosis, Skewness} and geometric features {Area, Perimeter, 
Width, Height, Ferret, Major, Minor, Circularity}. The detailed 
description of these features can be found in [20]. In 
pre-processing step, each feature vector is then normalized to 
have a zero mean and linearly scaled into [-1, 1] interval before 
presented at the input layer of the evolutionary RBF classifier.  
 
3.2 Evolutionary RBF Networks 
 
In an earlier work [32], MD PSO has been successfully used to 
evolve multi-layer perceptrons (MLPs), that is, the automatic 
design of the feed-forward ANNs and the search is carried out 
over all possible network configurations within the specified 
architecture space. In [32], no assumption was made about the 
number of (hidden) layers and in fact none of the network 
properties (e.g. feed-forward or not, differentiable activation 
function or not, etc.) is an inherent constraint of this scheme. As 
long as the potential network configurations are transformed 
into a hash (dimension) table with a proper hash function where 
indices represent the solution space dimensions of the particles, 
MD PSO can then seek both positional and dimensional optima 
in an interleaved PSO process. The optimum dimension found 
naturally corresponds to a distinct ANN architecture where the 
network parameters (connections, weights and biases) can be 
resolved from the positional optimum reached on that 
dimension. 
 In the current work, our approach for evolutionary RBF 
networks is somewhat different since they have a fixed structure, 
i.e. one hidden layer with only Gaussian neurons. So the search 
for the optimal layer number is not needed whereas 
determination of the optimal number of Gaussian neurons with 
their correct parameters (centroids and variances) has the utmost 
importance. Therefore, the dynamic clustering using MD PSO 
with FGBF is naturally applied to determine the optimal number 
of clusters (say N) and the corresponding (cluster) centroids μ . 
The number of Gaussian neurons and their centroids in the RBF 



network are then set according to the clustering results. The 
dynamic clustering is applied to the 15-D feature vectors of the 
training set of the macroinvertebrate database. Afterwards the 
variance, σ of each cluster (or Gaussian neuron) can be 
analytically computed. Note that RBF networks do not have 
weights assigned between input and hidden (Gaussian) 
layers –only between hidden and output layers. Therefore, there 

is no need for an evolutionary algorithm such as GA or PSO to 
compute the weights and biases, since in this case there is a 
unique solution or the problem is uni-modal. Hence BP can 
conveniently be used to compute the remaining network 
parameters, weights (w) and bias (θ ) of the each output layer 
neuron. Figure 2 summarizes the process of evolutionary RBF 
network design and training.   
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Figure 2: Overview of the evolutionary RBF network design. 
 

4. EXPERIMENTAL RESULTS 
 
The Benthic macroinvertebrate dataset used in this work 
consists of 1350 images representing 8 different taxonomical 
groups: Baetis rhodari, Diura nanseni, Heptageria Sulphurea, 
Hydropsyche Pellucidulla, Hydropsyche Siltalai, Iso Perla, 
Rhyacophila Nubila and Taeniopteryc Nebulose. Members from 
the same taxonomical group were captured by a flatbed scanner, 
digitized, normalized and eventually each sample in each scan 
was saved as an individual image.  
 Three individual samples from two classes are shown in 
Figure 3 and demonstrate some crucial properties of the data: 
specimens are semi-rigid so that the actual shape may vary from 
one sample to other. Furthermore there can be overlapping, 
repetitions, rotations, scaling and variations in the intensity 
levels, all of which make the classification problem even more 
challenging and the need for a powerful classifier is imminent 
for an accuracy matching the human (expert) classification.  

(A) (C)(B)

 

Figure 3: Three samples from Baetis rhodari (top) and 
Hydropsyche Pellucidulla (bottom) classes.  
 
4.1 Classification Results 
 
In order to evaluate the effect of the data partitioning, we 

created 10 distinct train-test partitions each with 650-700 
samples, randomly chosen among the dataset samples. The 
dimensional range for MD PSO (equal to the range for number 
of Gaussian neurons) is: 3510 maxmin =≤≤= DND . We kept the 
default parameters for MD PSO [19] with a swarm size, S=200, 
and velocity ranges are empirically set as 5/maxminmax XVV =−= , 
and 5/maxminmax DVDVD =−= . The position range is set as 

1minmax =−= XX . We make the comparative evaluations of the 
proposed evolutionary RBF networks against the RBF networks 
trained with the BP method for each partition. Since MD PSO is 
a stochastic technique in nature, in order to demonstrate its 
convergence to (near-) optimal solution, we perform 10 runs per 
partition from which first and second order statistics are 
computed. We also repeated BP 10 times per partition and per 
RBF configuration within the aforementioned range since BP is 
only a training method that cannot search for an optimal 
configuration. We have applied 2000 iterations for MD PSO 
clustering and 2000 epochs for the following BP operation 
whereas for the standalone BP training, we have applied 10000 
epochs. The increase and decrease factors for both BP 
(SuperSAB) operations were set to 1.25 and 0.5, respectively. 
As the classification error (CE) statistics on train/test sets 
presented in Table 1 clearly indicate, evolutionary RBF 
networks are far superior to the RBFs trained with traditional 
BP. This is particularly evident between their mean train and test 
CE statistics. Recall that BP training is applied over all RBF 
networks within the aforementioned range and still evolutionary 
RBF networks achieve such an average classification 
performance, which is better than even the best performance of 
the BP-trained RBF networks. This is in fact an expected 
outcome since BP is just a gradient descent algorithm on the 
error space, and besides weights and biases, it simultaneously 
computes 15-D centroids and variance per Gaussian neuron. In 
this case, the error surface obviously becomes quite complex 
and contains massive amount of deceiving local minima.  
Therefore, BP most likely gets trapped early into a local 
minimum, making its classification performance entirely 



dependent on the initial settings. On the other hand, 
evolutionary RBFs take the advantage of an uni-modal error 
space in significantly lower dimensions (containing only 
weights and biases) whilst parameters of the Gaussian neurons 
(their number, centroids and variances) are (near-) optimally 
computed by MD PSO with FGBF, with respect to the clustering 

validity index function given in Eq. (3). Due to this fact, the 
deviations (variance) in evolutionary RBF networks are also 
much lower than the ones with BP-trained. Another observation 
worth mentioning is that evolutionary RBF networks achieve a 
better robustness against the variations of the train/test datasets. 

Table 1. Train and test classification error statistics for evolutionary and BP-trained RBFs per dataset partition. The 
best (minimum) statistics are highlighted. 

 Train Classification Error Test Classification Error 
 BP-RBF Evol. RBF BP-RBF Evol. RBF 
 Min. μ  σ  Min. μ  σ  Min. μ  σ  Min. μ  σ  

Par-1 0.0554 0.1054 0.0152 0.0246 0.0395 0.086 0.0629 0.1079 0.017 0.06 0.0684 0.0065 
Par-2 0.0446 0.1003 0.0143 0.0246 0.0346 0.0061 0.0843 0.1353 0.0157 0.0729 0.08 0.0065 
Par-3 0.0554 0.105 0.0192 0.0215 0.0355 0.0112 0.0714 0.1288 0.0194 0.0529 0.0684 0.0095 
Par-4 0.0446 0.1028 0.0145 0.0277 0.0334 0.0089 0.0743 0.1234 0.0149 0.0586 0.0694 0.0093 
Par-5 0.0415 0.0954 0.0161 0.0154 0.0309 0.0137 0.0829 0.1329 0.0161 0.0671 0.0791 0.0143 
Par-6 0.0477 0.1017 0.0137 0.0277 0.0397 0.0126 0.0771 0.1308 0.014 0.0671 0.0797 0.0116 
Par-7 0.0538 0.1136 0.015 0.0308 0.0448 0.011 0.0743 0.1258 0.0151 * 0.0514 0.0739 0.0152 
Par-8 0.0462 0.0945 0.0168 0.02 0.0349 0.0153 0.0843 0.1313 0.017 0.0614 0.079  0.018 
Par-9 0.0508 0.1122 0.0191 0.0215 0.0337 0.0105 0.757 0.1305 0.02 0.0586 0.0754 0.0123 
Par-10 0.0569 0.1001 0.0153 0.0338 0.0385 0.0027 0.0757 0.1145 0.0142 0.0571 0.0653 0.0061 
 
4.2 Retrieval Results 
 
The retrieval process in MUVIS is based on the traditional 
query by example (QBE) operation. The features of the query 
item are used for (dis-) similarity measurement among all the 
features of the visual items in the database. Ranking the 
database items according to their similarity distances yields the 
retrieval result. The traditional (dis-) similarity measurement in 
MUVIS is by applying a distance metric such as L2 (Euclidean) 
between the feature vectors of the query and the (next) database 
item. So in Benthic macroinvertebrate database, this 
corresponds to computing Euclidean distance between two 15-D 
feature vectors. In order to obtain the highest retrieval 
performance, we have chosen the evolutionary RBF classifier 
with the best generalization ability (i.e. the one achieved the 
overall minimum test CE for partition-7, indicated with a ‘*’ in 
Table 1). When the classifier is used, the same (L2) distance 
metric is now applied to the class vectors at the output layer. In 
order to evaluate the retrieval performances with and without 
classifiers, we used average precision (AP) and average 
normalized modified retrieval rank (ANMRR) measures, both of 
which are computed querying all (1350) images in the database 
and within a retrieval window equal to the number of ground 
truth images, N(q) for each query q. This henceforth makes the 
AP identical to average recall and average F1 measures, too.  

With the traditional approach (without classifier), we 
obtain ANMRR = 0.4757 and AP = 0.4912, indicating in fact a 
quite poor retrieval performance due to the limited 
discrimination power of the basic descriptors used. With the use 
of the classifier, the retrieval performance has been improved to 
the level of ANMRR = 0.0671 and AP = 0.9255. This eventually 
presents an efficient solution for the accurate retrieval and 
biomonitoring of the macroinvertebrate specimens. For visual 
evaluation, Figure 4 presents two typical retrieval results with 
and without using the proposed classifier.   

Traditional With Classifier

 
Figure 4: Two sample queries of Baetis rhodari and Diura 
nanseni with (right) and without (left) using classifier. 
Top-left is the query image. 
   
 

5. CONCLUSIONS 
 
In this paper, we addressed the problem of cost-intensive 
manual taxonomic classification and retrieval of 
macroinvertebrate specimens by introducing a novel 



evolutionary RBF network classifier. With the proper adaptation 
of the native MD PSO clustering process, the proposed method 
can evolve to the optimum RBF network within the specified 
architecture space. Among many alternatives, in order to 
demonstrate the efficiency of the classifier and to propose a low 
cost solution, we have intentionally extracted the most basic and 
simplest features from the Benthic macroinvertebrate images. 
Both training and test classification results indicate a superior 
performance with respect to the traditional BP method, i.e. the 
average performance that the proposed evolutionary RBF 
networks surpasses even the best performance obtained by BP 
training. Even the worst (mean) classification errors for train 
and test sets, 4.48% and 7.286%, are far superior to the ones 
reported in a recent work [5], which used the same database 
with the identical number of classes.  

We then used the best classifier in terms of test 
classification performance, for the purpose of accurate 
similarity-based retrievals using the MUVIS framework. The 
retrieval results from the extensive query experiments show that 
an elegant performance in retrieval accuracy is achieved, 
particularly when compared to the traditional (without classifier) 
retrieval methodology.  
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